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Neural computations underpinning the strategic
management of influence in advice giving
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Research on social influence has focused mainly on the target of influence (e.g., consumer

and voter); thus, the cognitive and neurobiological underpinnings of the source of the

influence (e.g., politicians and salesmen) remain unknown. Here, in a three-sided advice-

giving game, two advisers competed to influence a client by modulating their own confidence

in their advice about which lottery the client should choose. We report that advisers’ strategy

depends on their level of influence on the client and their merit relative to one another.

Moreover, blood-oxygenation-level-dependent (BOLD) signal in the temporo-parietal junc-

tion is modulated by adviser’s current level of influence on the client, and relative merit

prediction error affects activity in medial-prefrontal cortex. Both types of social information

modulate ventral striatum response. By demonstrating what happens in our mind and brain

when we try to influence others, these results begin to explain the biological mechanisms that

shape inter-individual differences in social conduct.
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The role of social influence in our lives cannot be overstated.
Critical issues ranging from the outcomes of political
campaigns to our stand on issues such as global warming,

immigration and taxation depend on people trying to persuade
the general public1. Social influence is also intertwined with our
everyday life, as we try to persuade our children, influence our
bosses and gain popularity among our friends. Research on social
influence has been dominated by the motivation to understand
the minds of the targets of influence—the “clients” (e.g., con-
sumers and voters)—in order to exert even more influence on
them2. Far less is known about the cognitive and neurobiological
processes at play in the persuaders—the “advisers” (e.g., politi-
cians and salesmen). Here we ask what happens in the advisor’s
brain when engaged in the attempt to influence others.

Bayarri and DeGroot3 proposed a normative solution for how
advisers should modulate their strategy for offering their pre-
dictions in order to maximize their influence. They assumed that
clients are affected by advisers’ accuracy and confidence4–7, i.e.,
they will be more likely to follow advisers that express confidence
only when it is warranted and discredit highly confident but
inaccurate advisers. In this case, in order to be selected by the
client, advisers should modulate their advice-giving strategy
depending on their current influence on the client. When the
adviser is failing to influence the advisor, s/he should express
higher confidence than permitted by objective evidence (positive
advice confidence deviance). On the other hand, when the adviser
is trying to maintain and protect already high influence, s/he
should sit on the fence with cautious, nuanced advice that is lower
than justified by the evidence (negative advice confidence
deviance). We will call this a ‘competitive’ strategy for acquiring
and maintaining influence.

Social rank theory8,9 proposes an alternative account of
advising behaviour by positing that people are not motivated just
by the desire to influence others’ choices, but also by the fear of
being excluded by the target of their influence, their client. This
theory suggests that an adviser’s confidence should be propor-
tional to his/her rank in a group. Lower rank individuals adopt
submissive behaviours, expressing lower confidence and avoiding
eye contact8. Accordingly, social rank theory suggests that, in
contrast to the ‘competitive’ strategy described above, humans
may adopt a ‘defensive’ strategy to manage influence by giving
cautious advice when they are ignored by the client (i.e., when
their influence is low) and exaggerating their confidence when
their influence is high. In addition, social rank theory underscores
the importance of an active process of social comparison by
which an adviser evaluates her rank by tracking her performance
relative to rival advisers10–14. In this view, relative performance or
merit may also affect advice confidence leading people to display
higher confidence when they think they perform better than their
peers.

These theoretical models of strategic advice giving and influ-
ence management may rely on a number of social cognitive
processes, including mentalizing (theory of mind 'ToM')15, social
motivation16 and social comparisons17, which have been pre-
viously linked to specific neural substrates16,18. To track one’s
current level of influence (i.e., client preference for each advisor)
the adviser needs to evaluate the client’s state of mind from his
actions, presumably incorporating the brain’s ToM17 circuits.
ToM processes, such as mentalizing and updating other’s beliefs,
have been linked to activity in the right temporo-parietal junction
(rTPJ)19,20 and the medial prefrontal cortex (mPFC)15,20–23.
Influence management also requires the adviser to track her own
and her rival’s performance in order to calculate her relative merit
and adjust this as new evidence about rival’s performance
emerges13. Previous works suggest that this cognitive process is
linked to activity in the mPFC, which tracks rank and social

status24,25, and the performance of collaborators and
competitors26–29. Finally, the adviser is motivated to increase her
influence over the client and her merit over the rival adviser13.
Brain areas such as the ventral striatum (VS) and the ventro-
mPFC30, which track primary (e.g., food) rewards, are also
responsive to secondary social rewards such as being selected by
others31, having an increase in social status25 and being con-
firmed by the group32. These studies lead us to hypothesize that
fluctuations in social status and relative merit are tracked by a
reward-sensitive network.

Here we examine how people strategically manage their
influence and test the hypotheses we derived above regarding the
cognitive processes and neural systems underlying this process.
First, we examined the behavioural predictions of a normative
model of advice giving3 against those drawn from social rank
theory8. We asked whether people would give overconfident
(‘competitive’ strategy3) or under-confident (‘defensive’ strat-
egy8,9) advice when they are ignored by their client, and whether
social comparison with a rival adviser has a role in advising
behaviour. We then sought to identify the neural mechanisms
underlying the participants’ attempts to influence others by
advice giving, examining whether (and how) brain areas asso-
ciated with mentalizing, social comparison and valuation track
the appraisal made by a client and calculate relative performance
during a strategic advice-giving task.

We find that advice-giving behaviour is driven by an interac-
tion between the adviser’s current level of influence over the client
and the accuracy of her advice relative to the rival adviser. In four
separate experiments, we show that advisers’ advice confidence
was highest when recent history of advice and outcomes favoured
the adviser over her rival, but the client chose to listen to the rival.
Using a model-based functional magnetic resonance imaging
(fMRI), we find that trial-by-trial variations in selection by client
and relative merit prediction error were tracked in separate cor-
tical regions: the right TPJ and the mPFC, respectively. In addi-
tion, we observed that trial-by-trial changes in both variables
modulated activity in the VS.

Results
Behavioural task. We devised a social influence scenario in which
two advisers competed for influence over a client (Fig. 1, online
demo: http://www.urihertz.net/AdviserDemo). On a series of
trials, a client is looking for a reward hidden in a black or a white
urn. The client relies on two advisers who have access to evidence
about the probability of the reward being in the black or the white
urn. At the beginning of each trial (appraisal stage), the client
chooses the adviser whose advice (given later) will determine
which urn the client will open. The client’s choice of adviser is
displayed to the advisers, who then proceed to the evidence stage.
They see a grid of black and white squares for half a second. The
ratio between the black and white squares indicates the prob-
ability of the reward location. Next step is the advice stage. Each
adviser declares her advice about the reward location using a 10-
level confidence scale, ranging from ‘certainly in the black urn’
(score of 5B) to ‘certainly in the white urn’ (score of 5W). Sub-
sequently, both declarations are shown to both advisers and the
client (showdown stage). Finally, at the outcome stage, the urn
indicated by the chosen adviser’s advice is opened and its content
is revealed to everyone. The next trial begins with the client
selecting an adviser—the client can decide to switch advisers or to
stick with the same adviser.

We were interested in the way advisers use advice confidence
as a persuasive signal to manage their influence over the client. In
our first experiment, therefore, all participants were assigned to
play the role of adviser, whereas the rival adviser and the client’s
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behaviour were governed by algorithms adapted from Bayarri and
DeGroot3 (see Methods). We examined participants in three
independent cohorts: online (N = 58), in the lab (N = 29) and in-
the-scanner (N = 32). There were some minor differences between
the groups, as online participants performed fewer trials than
those in the lab and the scanner. Online participants were paid a
bonus for the number of times the client selected them, whereas
the cohorts tested in the lab and the scanner received a fixed
monetary compensation (see full details in Methods section).
Finally, to examine whether the observed behaviour can be
generalized to real life social interactions, we ran another lab-
based interactive version of the experiment (48 participants
organized in 16 triads, thus comprising 32 advisers and 16 clients)
in which all roles (advisers and client) were played by participants
who genuinely interacted with one another.

The effect of selection by client and relative merit. To assess the
advising behaviour, we examined the trial-by-trial deviance of
advice confidence from probabilistic evidence (Fig. 2a). If the
adviser is strictly committed to communicating the information
she is given, then confidence exactly matches the ratio of black to
white squares in the evidence grid (Fig. 1b). For such adviser,
confidence level of ‘certainly in the black urn’ (score of 5B) is
reported when close to 100% squares in the grid are black,
indicating that probability of the coin being in the black urn is

almost certain. Conversely, lack of confidence (score of 1B) stems
from weak evidence and indicates the probability of the coin
being in the black urn is around chance (50%). Advice confidence
would deviate if the confidence is higher (positive deviance) or
lower (negative deviance) than the probability indicated by the
evidence. Participants’ advice deviance was significantly greater
than 0 (two tailed t-test, t(119) = 17.08, P< 0.00001, Cohen’s d
(d) = 1.56), as they displayed systematic overconfidence in their
advice. Importantly, participants’ advice deviance was affected by
their current level of influence on the client, i.e., were they
ignored or chosen by the client (‘selection by client’ variable), and
was larger, i.e., more overconfident, when ignored by the client
compared with trials in which the participant was the selected
adviser (paired t-test, t(119) = 3.1, P = 0.002, d = 0.28) (Fig. 2b).
Moreover, participants adjusted their advising policy dynami-
cally: overconfidence increased in periods when they were not
chosen by the client and was attenuated during periods during
which they were selected by the client (Fig. 2c).

This finding demonstrated how being selected over a rival
shapes the advisor’s attempt to influence the client, in line with
the predictions of the competitive strategy. However, our analysis
so far focused only on the current level of influence on the client,
measured by whether or not the adviser was selected by the client,
as the force shaping our attempt to influence others, while
ignoring the effect of social comparison with the rival adviser
implicated in social rank theory10–14. A deeper understanding of
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Fig. 1 Experimental design. a Participants were engaged in an advice giving task. In this task, a client is looking for a coin hidden in a black or white urn. He
relies on advice from two advisers (the participant (blue) and a computer-generated rival adviser (red)). The advisers, but not the client, have access to
information regarding the probability of the coin location. The client considers the advisers’ previous success and current confidence when choosing an
adviser to follow on each trial. b Each trial contains five stages. (1) Appraisal: in the beginning of each trial the client chooses the adviser he is going to
follow on the commencing trial (and consequently which adviser is ignored). (2) Evidence: the participant (and the rival) then sees a grid of black and white
squares, whose ratio represents the probability of the coin being in the black urn. (3) Advising: the participant states his advice on coin location using a 10
levels confidence scale ranging from 'definitely in the black urn' (5B) to 'definitely in the white urn' (5W). (4) Showdown: both advisers’ opinion is
displayed. (5) Outcome: the content of the urn suggested by the selected adviser (magenta circle) is revealed. The next trial starts with appraisal by client
based on the history of confidence and success. The stages timings indicated are from the fMRI experiment, where jitter was introduced between stages.
See supplementary materials for online and lab stages timings. An interactive demo of the experiment can be viewed at http://www.urihertz.net/
AdviserExperiment.html
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the participant’s advising strategy would require factoring in the
interaction between the clients’ selection of the advisor, an
exogenous variable, and the advisor’s relative merit
(an endogenous variable). To disentangle the impact of the
client’s selection and the advisor’s relative merit on the
adviser’s advice-giving behaviour, we employed a computational
approach.

Although the client’s adviser selection on each trial was made
public to the participants and explicitly available for analysis,
trial-by-trial variations of adviser’s merit relative to the rival
adviser had to be inferred to examine its effect on advice giving.
We noted that participants could evaluate the prognostic value of
their own and their rival’s advice every time the content of the
chosen urn was revealed (Fig. 3a). For example, strong advice for
the black urn would have better prognostic value than a cautious

advice supporting the same choice) if the black urn contained a
coin. Conversely, cautious advice for the white urn would have
better prognostic value than strong advice for the white urn if the
white urn was chosen but turned out to be empty. Prognostic
value is calculated by multiplying advice confidence with its
accuracy (correct = 1, wrong = −1) (i.e., whether the urn suggested
by the advice contained a coin, see Methods for further details).
On a given trial t, we update the relative merit variable by using
the difference between the prognostic value of the participant’s
and the rival’s advice such that:

ΔPrognosticValueðtÞ¼ConfidenceParticipantðtÞ � AccuracyParticipantðtÞ
� ConfidenceRivalðtÞ � AccuracyRivalðtÞ

ð1Þ

RelativeMeritPEðtÞ¼ΔPrognosticValueðtÞ � RelativeMeritðtÞ
ð2Þ

RelativeMeritðtþ1Þ¼RelativeMeritðtÞþγ � RelativeMeritPEðtÞ
ð3Þ

In eq. (3) γ is the learning rate of change to relative merit.
Relative merit is positive if the participant’s advice had
consistently higher prognostic value compared with rival’s advice.
Importantly, relative merit is calculated independently from
selection by the client and gives a quantitative estimate of the
latent subjective process of social comparison.

To quantify whether and how this measure of relative merit
could explain overconfidence behaviour, we followed a model
fitting approach used in behavioural and neuroimaging studies to
estimate the latent subjective processes that involve adviser’s
reliability, reward prediction errors and social compari-
sons29,33,34. We fitted six hierarchically nested computational
models to advice deviance. Our most simple model had only one
free parameter for systematic bias in advising, capturing the
average (intercept) advice deviance, which stands for trait
overconfidence and under-confidence (Bias Model). Our next
model included the trial-by-trial selection by the client as well
(Client Model). Positive values of the weight assigned to selection
by client weight, would indicate that the participant followed a
‘defensive’ strategy, expressing higher confidence when selected
by the client. Conversely, negative values for this parameter
would correspond to the ‘competitive’ strategy. Our next model
included the sign of the relative merit from eq. (3) (Merit model)
and another model included both the sign of the relative merit
and selection bay the client (Mixed model). Finally, we set up a
model which included all the above and the interaction between
selection by client and relative merit (Interaction model, eq. (4)).
We also fitted models that used the sign and amplitude of relative
merit (see Supplementary Materials).

AdviceDevianceInteraction tð Þ¼BiasþβSelection � Selection tð Þ
þ:::βMerit � sign RelativeMerit tð Þð ÞþβInteraction � Selection tð Þ

�sign RelativeMerit tð Þð Þ
ð4Þ

After fitting all models to the advice deviance data and
compensating for the number of free parameters (see Supple-
mentary Table 1, and Supplementary Figures 2 and 3), we found
that the interaction model (eq. (3)) gave the best fit to the
empirical data. Our model fitting procedure estimated individual
parameters for Bias, γ, βSelection, βMerit and βInteraction (Supple-
mentary Figure 3 and Supplementary Table 1). Bias parameter
was significantly higher than zero across participants, verifying
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level of individual differences, this parameter was significantly lower than 0
across participants (Mean± SEM= −0.08± 0.02, t(119)= 3.12, P<
0.002), in line with our previous analyses
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our observation that participants were generally overconfident
(mean± SEM Bias: 0.67± 0.05, two-tailed t-test, t(119) = 13.1, P
< 10−10, d = 1.29). In addition, the selection parameter (βSelection)
was significantly lower than zero across participants (mean±
SEM: − 0.07± 0.02, two-tailed t-test, t(119) = −3.2, P = 0.002, d =
0.28), supporting our direct comparison in Fig. 2b, favouring the
‘competitive’ over ‘defensive’ hypothesis.

Although selection parameter (βSelection) was significantly lower
than 0, we observed high degrees of variability among individuals,
with a positive selection parameter estimated for one third of our
participants (38) (Fig. 2d). Previous works on social rank
theory8,35 suggested that negative self-esteem, i.e., seeing oneself
as inferior to others and less desirable, may lead to displays of low
confidence in social interactions and a greater receptivity to
negative social signals. We reasoned that population variability in
behavioural response to social selection and/or exclusion (as
quantified here by our selection parameter) may be accounted for
by individual differences in receptivity to negative social feedback.
To test this hypothesis, we went back to our pool of participants
and were successful at recruiting N = 69 of them to complete the
Fear of Negative Evaluation (FNE) questionnaire8,36. We found
that FNE score correlated with the participants’model estimate of
selection parameter, as participants with higher FNE score, i.e.,
more negative self-perception, were more likely to follow the
defensive strategy (N = 69, Pearson's correlation R = 0.25, R2 =
0.06, P = 0.036). By linking previous research on social rank and
our participants’ behaviour, this latter finding provided evidence
of external validity for our computational model.

Estimated model parameters associated with relative merit, and
the interaction term between relative merit and selection by client
were harder to interpret directly. Even greater individual
differences were observed for these parameters. When averaged
across participants, neither parameter was significantly different

from zero (two-tailed t-test, t(119) =< 0.7, P> 0.45), with
individuals varying in the effect of relative merit and interaction
(see Supplementary Table 1). However, model selection and
comparison showed beyond doubt that the interaction parameter
did provide the model with better power to capture behaviour. To
examine the contribution of all parameters to the explanation of
the behavioural data, we used the sign of the relative merit
estimated by the interaction model using the fitted relative merit
learning rate γ (eq. (3)), to label the trials as ‘positive’ vs. ‘negative’
relative merit. Each trial was also categorized according to the
selection by the client as ‘ignored’ or ‘chosen’. We then examined
advice deviance across the resulting 2 × 2 combinations of relative
merit (positive vs. negative) and selection by client (selected vs.
ignored) using a repeated-measures analysis of variance
(ANOVA). We found a significant effect of relative merit (F
(1,358) = 14.4 P = 0.0002, η2Partial = 0.14), a significant effect of
selection by client (F(1,358) = 8.1, P = 0.005, η2Partial = 0.04) and a
significant interaction effect (F(1,358) = 17.95, P< 0.0001, η2Partial
= 0.14) on advice deviance, as model fitting procedure had
suggested (Fig. 3b and see Supplementary Figure 5 for these
results for each cohort (online, lab and scanner) separately).
Importantly, this analysis elucidated the nature of the interaction
by showing that participants expressed significantly greater
confidence in their advice on trials in which they assumed they
had done better than their rival (i.e., positive relative merit) but
nonetheless had been (perhaps unexpectedly) ignored by the
client. To put it metaphorically, advisers shouted most loudly
when they had reason to believe that their merits had been
overlooked. We used a simulation to examine whether such
pattern could be recovered by one of our competing models (bias,
client, merit, mixture and amplitude, as described above)37 and
found that only the interaction model (eq. (4)) could reproduce
this pattern of results (Supplementary Figure 4).
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The behaviour we observed—namely increasing advice con-
fidence when ignored by the client while having positive relative
merit (Fig. 3)—could potentially be a response to the specific
manner in which our algorithms controlled the client and rival
adviser behaviour (which they did by following Bayarri and
DeGroot’s assumptions3). To confirm the validity and generality
of our results, we ran a fully interactive experiment in a fourth
cohort of participants, in which both the advisers and the client
were human participants (see Methods for details) and no agent’s
behaviour was under experimenter control. The scenario was the
same as before, but now involved three participants engaged in a
multiplayer game played on three computers in three adjacent
cubicles connected via the internet. We applied the same analysis
and model fitting, and estimation of relative merit and selection
by client effects to the advisers’ behaviour in this fully interactive
experiment. The results replicated the main results from the
virtual agents’ experiment: advice deviance was highest when the
adviser was ignored but her relative merit was positive (Fig. 3c;
mixed-effects ANOVA; a significant interaction effect (F(1,96) =
5.05, P = 0.03, η2Partial = 0.14, and a significant effect of relative
merit, F(1,96) = 4.43, P = 0.04, η2Partial = 0.125). In addition, we did
not observe any significant discrepancies between live client’s
behaviour and virtual client behaviour, when comparing the real
clients and algorithm simulation proportion of choosing adviser 1
(paired t-test, t(15) = 1.45, P = 0.17) (Supplementary Figure 6).

To further examine the relation between the virtual and live
experiments, we fitted data from all experimental cohorts, within
a mixed-effect ANOVA with relative merit (positive/negative),
selection by client (chosen/ignored) and agents (live/virtual) as
main factors and subjects as random-effect factor nested within
the agents factor. We did not observe any effect of agents on
advice, neither in the main effects nor the interaction. Overall, we
observed a significant main effect of relative merit (F(1,442) =
15.85 P = 0.0001, η2Partial = 0.096), a significant main effect of
selection by client (F(1, 442) = 6.17, P = 0.014, η2Partial = 0.04) and a
significant interaction between the two factors (F(1, 442) = 9.28,
P = 0.002, η2Partial = 0.06).

The results from the fully interactive experiment provided an
additional replication of our main results, demonstrating the
robustness of the findings and strengthening the ecological
validity of the paradigm in generalizing the findings to interactive
human behaviour.

Neural correlates of selection by client. Having established the
effects of selection by client and relative merit on advising
behaviour, we used the same paradigm to examine the neural
correlates of the attempt to influence others. Participants played
the role of adviser in the advice-giving game with the computer
algorithm controlling the client and rival adviser responses, while
lying in an MRI scanner. Each of the five stages of a trial in the
advice-giving game was treated as an event in a fast event-related
design (see Methods). Using the computational model-based
analysis described above, we labelled trials according to their
relative merit (positive vs. negative) and selection by client
(ignored vs. chosen). The resulting 2 × 2 combination of condi-
tions allowed us to examine the changes in the blood-oxygena-
tion-level-dependent (BOLD) signal that correlated with the main
effects of selection and its interaction with relative merit. Activity
in the rTPJ (P< 0.001, family-wise error (FWE) cluster size-
corrected P< 0.05) (Fig. 4 and Supplementary table 2) displayed
the main effect of selection by client (Ignored> Selected): BOLD
signal in this region was higher when the participant was ignored
(vs. selected) by the client (regardless of the sign of relative merit)
during the observation of evidence. This finding is in line with
previous studies showing increased activity in the rTPJ when

others’ actions did not match the participant’s predictions38, and
when inferring others’ intentions from their actions20.

When evaluating the interaction model parameters, we
observed that trait negative self-perception, as assessed by the
FNE score8,36, was associated with tendency to follow the
defensive strategy of advice giving. Based on that observation,
we hypothesized that FNE scores may predict the brain activity
associated with Selection by the Client. Twenty-eight of the
participants that took part in the neuroimaging experiment also
completed the FNE questionnaire. Consistent with our hypoth-
esis, we found that the rTPJ response to selection by the client
(ignored > chosen, Fig. 4) was correlated with participants’
individual FNE score (Fig. 4c) (N = 28, Pearson's correlation R
= 0.65, R2 = 0.39, P = 0.0004). Sensitivity of rTPJ to selection by
client (ignored> chosen) increased with participant’s inferior
self-perception, captured by the FNE scores.

To further examine the effect of selection by client, we used a
‘client selection switch’ predictor as a regressor in a whole brain
general linear model (GLM) analysis. The ‘client selection switch’
predictor was set to + 1 on trials when the client switched from
the rival adviser to the participant, to −1 when switching from the
participant to the rival adviser, and to zero when the client did
not switch adviser. We found that the VS activity was modulated
by the ‘client selection switch’ variable during the evidence
observation stage. VS activity increased when the client switched
from the rival adviser to the participant and decreased when the
client switched from the participant to the rival (Fig. 4d, P<
0.001, FWE cluster size-corrected P< 0.05, see Supplementary
table 3 and Supplementary figure S7 for uncorrected map). The
‘client selection switch’ variable reflects the changes in the client
selection, similar to the way prediction errors reflect changes in
expected reward30, and are in line with reports of increased VS
responses when selected by a client31. To summarize, trial-by-trial
‘selection by client’ was tracked by the rTPJ activity, while client
selection switches were tracked in the VS.

Neural correlates of relative merit. At the outcome stage, par-
ticipants had all the information necessary to compare the
prognostic value of their own and the rival’s advice (Fig. 3, eq.
(1)), and to update their relative merit variable by computing the
relative merit prediction error (PE) (eq. (2 and 3)). Using
the model parameters evaluated for each individual, we estimated
the trial-by-trial relative merit and relative merit PE variables
values, and used these as predictors in a whole brain parametric
modulations analysis (see Methods). We found that during the
outcome stage, activity in mPFC tracked the trial-by-trial changes
in relative merit PE (Fig. 5a, P< 0.001, FWE cluster size-
corrected P< 0.05, see Supplementary table 4 and Supplementary
figure 5 for uncorrected map). The findings reported here support
the role of mPFC in social comparison with the rival adviser,
tracking trial by trial the relative performance used to update
relative merit. Moreover they are consistent with involvement of
mPFC in evaluating and inferring other agents’ traits such as
reliability29 and accuracy26,27 and beliefs39,and in evaluating
one’s rank in relation to others24.

Using the relative merit PE in a whole brain parametric
modulation analysis during the Appraisal stage (Fig. 1) we found
that the VS tracked the trial by trial fluctuations in relative merit
PE (Fig. 5b, P< 0.001, FEW cluster size-corrected P< 0.05, see
Table ST5, and Figure S8 for uncorrected map showing bilateral
VS activity). VS responses to prediction errors in social
comparison are in line with previous studies showing similar
VS responses to interpersonal prediction errors40, and to relative
performance26.
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To further explore the temporal dynamics of tracking relative
merit PE and client selection switches, we used a region of interest
(ROI) approach to examine the time courses from the mPFC and
the right VS (and left VS, see Fig. S8). These ROIs were defined
using spheres around the coordinates indicated by NeuroSynth41

forward inference maps for the term ‘Ventral Striatum’ and
around the peak activation in the mPFC (see Methods). We
followed the steps used in previous studies29 to examine time
courses of trials containing multiple jittered stages, aligning each
trial stage timings to the stage’s mean time. We then performed a
GLM on each time point across trials, in each participant,
regressing the trial-by-trial relative merit PE and the client
selection switch variables from the BOLD signal and evaluating
group effects (Fig. 5c, d). We found that the mPFC response to
relative merit PE, but not for client selection switch, increased
after the outcome stage (two-tailed t-test of β-coefficients, t(31) >
2.8, P< 0.005, see dots in Fig. 5c). In the VS, responses to relative
merit PE reached significance (two-tailed t-test of β-coefficients, t
(31)> 2.8, P< 0.005, see dots in Fig. 5d) before the responses to
client selection switch.

To summarize, the interaction between relative merit (vs. rival
adviser) and current level of influence on the client shape advice
confidence. Across four experiments, confidence was highest
when recent history indicated that a given adviser had performed
better than her rival, but the client still chose to listen to the rival.
Individual differences adherence to this strategy were associated
with personality trait of lower self-perception, captured by high
FNE scores. Brain activity in the right TPJ covaried with selection
by the client and this effect was enhanced in participants with
high FNE score. Switches in client’s choice of adviser were tracked
by activity in the VS. Fluctuations in relative merit prediction
errors were correlated with mPFC and VS response.

Discussion
We set out to study how humans attempt to influence others and
found a pattern of behavioural results consistent across multiple
cohorts of participants playing the advice-giving game with either
virtual or real confederates in web-based and laboratory-based
experiments (respectively). Advice giving behaviour was driven
by the interaction between two factors: the current level of
influence over the client and the relative (i.e., social comparative)
merit over the rival. Most prominently, when participants’ rela-
tive merit was positive (i.e., they were doing better than their
rival), they followed what we called the ‘competitive’ strategy3 by
expressing higher confidence when ignored by the client and
lower confidence when selected by the client. Inter-individual
variability in participants’ behaviour was captured by a perso-
nalized quantitative combination of the impact of these two
factors on advice confidence placing each participant’s strategy
along a spectrum ranging from competitive3 to defensive9. This
quantitative profile was predictive of the participant’s self-
reported FNE score8, thus grounding our paradigm firmly in
previous research on self-esteem. Using fMRI, we found that the
mPFC and VS tracked the changes in the participants’ inferred
merit relative to the rival adviser (relative merit PE). The rTPJ
tracked the client selection of adviser on each trial, with increased
activity on trials in which the participant was ignored. Switches in
client selection (from the participant to the rival adviser and vice
versa) were tracked by VS activity. The temporal dynamics of the
computations tracked by the BOLD signal in the VS were con-
sistent with the unfolding of events across the trial, with relative
merit PE tracked before selection by client.

Our study goes beyond previous investigations of the neuro-
cognitive basis of social influence in a number of key aspects.
First, it put the participants (advisers) in a position to influence

others’ (client) choices. Almost all previous studies of social
influence invariably concentrated on how one reacts to attempts
by others to shape their behaviour. For example,
Campbell–Meiklejohn et al.42, and Izuma and Adolphs43 inves-
tigated how our preferences change when we observe others’
opinion about objects of variable value. In these studies, the social
influence was predefined by the experimenter and the partici-
pants’ behaviour could not change this influence. Zink et al.25 and
Lignuel et al.34 investigated how people infer their status in a
dominance hierarchy from competitive and/or cooperative
interaction with others. The results from Ligneul et al.34 showed
that mPFC was involved in the dynamic representation of one’s
status in a group’s hierarchy and in the manner this information
is used when choosing (or avoiding) opponents in subsequent
competitive or cooperative encounters. However, these studies
focused on how the participant reacted to others’ attempts to
shape the participant’s behaviour and therefore did not examine
the ways participants might attempt to affect their opponent nor
how participants may try to establish their own dominance so
that trouble-making opponents would avoid them. Although
Mobbs et al.31 studied advice giving behaviour directly—and
showed that VS activity increased when the participant’s advice
was taken and beneficial, and the mPFC activity following the
advice consequences—their scenario was not interactive as
the client’s responses and participants’ accuracy were set by the
experimenter and advisers could not use any strategic signal (such
as confidence) to influence the client. Here we studied advisers’
strategic behaviour as they tried to influence a client in an
interactive context similar to other game theoretic treatments of
social influence such as the inspector20,44 and the trust game45.

The second way in which our study goes beyond previous
investigations of the neurocognitive basis of social influence is in
the social relationships between the confederates. Although pre-
vious research studied human social interactions with more than
one confederate, none placed their participants in a context
involving dissimilar (asymmetric) social relationships to the
confederates. In many studies, social interactions involved
tracking another person’s reliability or intentions20,29, or tracking
multiple agents all having a similar role26–28,42. Other studies
have examined how people evaluated group behaviour, where the
groups consisted of agents with similar incentives and roles and
the participants engaged in various tasks such as competitive
bidding46, reaching consensus47, inferring one’s hierarchical
rank24,34 or tracking the group’s preferences32. However, in our
task—as is the case in many real-life scenarios—the participant
had to track two distinct types of relationships: a competitive one
with a rival adviser and a hierarchical one with a client whose
appraisal they sought. This novel configuration of asymmetric
social relationships allowed us to disentangle the separate con-
tributions of the elements of the ‘social brain’ system19,22, namely
that of rTPJ and mPFC in influencing others. These contributions
consisted of an internally and an externally driven processes. The
internal inference process was tuned to social comparison and
the computation of one’s relative merit in the mPFC24,26,39. The
external process was tuned to the evaluation of social outcomes
arising from others’ behaviour in relation to the self, in our case
the selection by client, in the rTPJ. Finally, one may interpret the
selection by client as an external event to which the participant’s
attention is oriented at the beginning of every trial, in contrast,
for example, to the latent process of social comparison tracked in
the mPFC. The rTPJ activity elicited by external social events
would therefore be in line with previous findings about the
involvement of rTPJ in the orienting of attention to salient
external events48,49. This distinction is also in line with previous
results examining strategic behaviour in two-person games20,
where mPFC was associated with internal inference processes and
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the rTPJ with evaluating external signals about the behaviour of
the other.

Our findings also provide evidence for the involvement of the
VS in social behaviour. Changes in both relative merit and
selection by client affected VS BOLD activity, a neural structure
implicated in valuation of motivational factors in decision mak-
ing. This observation is in line with the combined interactive
impact of these two factors on advising behaviour. Previous
studies have shown that striatal neural activity may encode
multiple social attributes such as reputation50, selection25,
appraisal31 and vicarious reward51, and also in tracking other’s
behaviour and interpersonal prediction error40. Here striatal
activity was correlated with the different computational compo-
nents of the interactive scenario as they emerged during the
course of the interaction: social comparative merit and social
appraisal. This finding supports the notion that the VS has a
domain-general and dynamic role in valuation of various events
in our environment as they occur30,52.

In addition, our results indicate the importance of individual
differences in social self-perception on strategic social behaviour.
Computational analysis of behaviour revealed considerable var-
iations in participants’ advising strategies, with each participant’s
behaviour falling on a continuum from a pure ‘defensive’9 to a
pure ‘competitive’3 strategy. These variations were captured by a
personalized quantitative combination of the impact of relative
merit and selection by client on advice confidence and were
consistent with social rank theory: participants with negative self-
perception, scoring high on FNE, were more likely to follow the
defensive strategy8. In the neuroimaging experiment, participants
with higher scores of negative self-perception displayed increased
response in the rTPJ to being ignored by the client. These findings
provide converging evidence linking management of social
influence to negative self-perception. Our cognitive framework
should aid future research on the social basis of mental health
disorders such as depression. Deterioration of self-esteem and
retreating from social engagement are two of the earliest and
most debilitating hallmarks of depression8. The laboratory model
described here offers a uniquely appropriate ecologically valid
tool for measuring these social cognitive characteristics of
depression.

Finally, our results demonstrate how people use confidence
reports as a persuasive signal in a strategic manner. Such use of
confidence reports is in line with the literature on persuasion and
information sharing3,4,53. However, numerous studies have used
similar confidence reports to study the process of metacognition,
the internal process of evaluating one’s precepts and deci-
sions54,55. Our findings demonstrate how, depending on the
social context, confidence reports can depart from simply
describing uncertainty about sensory information or decision
variables. The findings underscore the importance of taking extra
care about the framing (e.g. experimental instructions) and
phrasing of how to ask participants to report their confidence in
psychological and neuroscientific investigations. Our findings
support the view of metacognition as a multi-layered process56, in
which expressing one’s confidence depends not only on uncer-
tainty about low level sensory processing or decision processes
aiming to maximize reward, but also on other systematic, non-
trivial sources of variance such as social comparison, closeness
and friendship57,58, and social expectation59.

People with a more accurate opinion are often more confident.
However, the converse is not necessarily true: being more con-
fident is not necessarily predictive of accuracy. Many keen
observers of human condition (e.g., Bertrand Russell, W. B. Yeats
and William Shakespeare, to name but a few) have complained
that people who know a lot are fraught with self-doubt, whereas

the ignorant are passionately confident. Our behavioural and
neurobiological results suggest that passionate overconfidence of
the underdog could be better understood as a sensible recourse to
the competitive strategy designed to gain higher social influence, a
behaviour supported by the brain’s social and valuation systems.
The philosophers’ sad lamentation therefore highlights the
importance of the social comparison processes, in moderating the
competitive behaviour of the ignorant.

Methods
Participants. We recruited four cohorts of participants for this study. All parti-
cipants provided informed consent, and received monetary compensation. The
study was approved by the research ethics committee at University College London
(UCL). Following a pilot experiment involving 20 participants, we estimated our
effect size to be around 0.5. As our experiment follows a within-participants design,
we decided to recruit 60 participants for the online experiment and 30 participants
for the longer lab based experiment. We recruited 60 participants for the online
experiment using Amazon M-Turk. Two online participants were excluded from
analysis, as they did not use the full confidence scale. Online participants included
31 males (ages mean ± SD 33.7± 9.6) and 27 females (ages 36± 8.5). We recruited
30 participants for a lab based experiment, in which participants carried the
experiment on computers in the Psychology department building. One participant
was excluded from analysis as she used only one advice level. Lab participants
included 13 males (ages 26.5 ± 6) and 16 females (ages 26.2± 6). Finally, 34 par-
ticipants were recruited for the neuroimaging part of the experiment. These cor-
responded to the expected effect size of activity in previous social cognition
neuroimaging studies, e.g., see refs 25,31,43. Of these, two participants were excluded
from analysis due to head movements and data corruption. Neuroimaging parti-
cipants therefore included 18 males (ages 24.7± 6.6) and 14 females (ages 23.78±
4.6). Finally, in the fully interactive experiment we collected data from 19 triplets
(57 participants, 24 males aged 25.2± 4.76, and 33 females aged 21.2 ± 2.25) and
excluded 3 triplets from analysis. These included two triplets in whom advisers
used only the highest confidence levels (4 and 5) and one triplet in whom the client
chose only one adviser throughout the experiment. We therefore analysed the data
from 32 advisers in the live interaction experiment.

Client and rival adviser algorithms. All participants in the main experiment
played the role of an adviser, whereas the client and the other adviser were played
by computer algorithm. The other adviser’s advice were calculated on each trial
according to the probability of the coin being in the black urn (between 0–1), plus
noise (~N (0,0.08)), to range between [5W 5B], just like the participants’ advice.
After outcome is revealed on each trial, both advice’s prognostic value is calculated
by multiplying the confidence level (1–5) by accuracy (indicating the correct coin
location, i.e., W for white or B for Black urn, 1 = correct, − 1 = incorrect, eq. (1)).

The client’s choice of adviser was determined by assigning an influence weight
to each adviser, updating the weights after each outcome and choosing the adviser
with the higher weight in the next trial. The weights summed to 10 and were set to
be 5 for each adviser in the beginning of the experiment. To update the client
influence weights, we used prognostic value of advice (PA), which were derived
from advice according to the following rule: when the black urn is suggested then
confidence is between [− 5, − 1] and PA is calculated by confidence + 6 to range
between [1, 5]. When the white urn is suggested then confidence is between [1, 5]
and PA is calculated by confidence + 5 to range between [6, 10]. We used the
notation PAP for to refer to prognostic value of the participant’s advice and PAO

for prognostic value of the other’s (rival) advice. The weights were updated after
each trial according to the last trials’ prognostic values, following a rule similar to
the one used by Bayarri and DeGroot3:

wP t þ 1ð Þ ¼ 10 � wP tð Þ � PAP tð Þ2
wP tð Þ � PAP tð Þ2þwO tð Þ � PAO tð Þ2 ð5Þ

Where wp is the influence weight assigned to the participant. The other adviser’s
influence weight was defined as wO t þ 1ð Þ ¼ 10� wP t þ 1ð Þ. It is noteworthy that
when the influence weight of one adviser increases, the other adviser’s influence
decreases in the same amount. When both advisers give the same advice the
influence weights remain the same.

Experimental procedure. We carried out the main experiment on three different
platforms: online, in the lab and in the scanner. The main experimental design
features were the same across these experiments with a number of minor differ-
ences in implementation.

In the online experiment, participants were recruited using Amazon M-Turk.
These participants carried out the experimental task online on their own computers
using the mouse to input their confidence rating. They received a fixed monetary
compensation and were promised a bonus if the client selected them on more than
100 trials. The online experiment had 130 trials. Evidence stage lasted 500 ms and
all other stages of the trial were self-paced. Advice giving stage ended when
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confidence was reported. After the outcome was displayed, participant proceeded
to the next trial by pressing a ‘Next’ button.

Lab-based participants were invited to the lab in groups of three and were told
that they are about to play an adviser game together, and that the roles of two
advisers and client will be assigned randomly at the beginning of the experiment.
The participants were then seated in isolated individual cubicles. Unbeknownst to
the participants, all three players were assigned to the adviser role and played
against a virtual client and a virtual rival adviser. Lab-based participants received a
fixed monetary compensation, and did not have any further incentive. Lab-based
experiment consisted of four blocks of 70 trials. Advice giving stage was self-paced.
All other stages lasted a predefined length of time: appraisal stage lasted
1.5 s, evidence stage lasted 500 ms, showdown stage lasted 2 s and outcome stage
lasted 2 s.

In the neuroimaging experiment, participants arrived at the scanner unit and
met two confederates and were given the same cover story as the lab-based
participants. Participants were then put in the scanner, and were instructed on the
use of response boxes for inputting their confidence ratings: left-hand response box
shifted the rating towards the black urn, right-hand response box shifted them
towards the white urn. Participants received a fixed monetary compensation. In
this experiment, intervals between stages were set to 1.5 s plus a jittered interval
sampled from a Poisson distribution (range 0–3 s; mean 1.5 s). Neuroimaging
experiment consisted of four blocks with 60 trials. Advice giving stage was self-
paced. All other stages lasted between 1.5 and 4.5 s. In addition, four intervals of 8 s
rest were randomly dispersed between trials of each run.

In addition to the main experiment, we ran a fully interactive experiment in
which all roles in the task, advisers and client, were played by human participants.
This experiment was carried in a similar manner to the lab-based main experiment,
with participants arriving in groups of three, and carrying the experiment on
computers in separate cubicles where they were randomly assigned to the roles of
advisers or client. Participants received a fixed monetary compensation and did not
get any further incentive. The experiment consisted of 130 trials. The pace of the
experiment depended on the interaction between the participants. Advisers waited
for the client to choose one of them and then the client waited for both advisers to
express their advice. See analysis of live and virtual clients’ behaviour in
Supplementary Materials figure S6.

Selective manipulation of advice quality. In our early pilot sessions, we noticed
that sometimes the virtual client did not shift between participants, practically
ignoring one of them throughout the experiment. This happened because advisers
tended to be very similarly calibrated with the evidence. As we intended to use a
within-participants design to compare advice on periods in which the adviser is
chosen and periods in which he is ignored by the client, we needed a way to
manipulate the probability of switching between selected and ignored status.
Therefore, in restricted periods of a block, we introduced some noise to one of the
two advisers’ evidence such that the ratio of black and white squares in the grid
became a poor predictor of the reward location. This procedure went as follows: if
on a specific trial the probability of the coin being in the black urn was 0.75, the
grid would normally include 75 black and 25 white squares (Figure S1). On a noisy
trial with similar probability of 0.75, this composition would change to 55 black
squares and 45 white squares, akin to a reduction in contrast by 20 squares. In all
noisy trials contrasts were reduced by 20 squares in a similar manner (Figure S1).
The procedure ensured that one advisor’s advice accuracy was systematically
inferior to the other one for a number of consecutive trials thus increasing the
probability that the virtual client would shift to selecting the other adviser.

To ensure that the evidence quality manipulation was not the sole driver of
changes in accuracy and difficulty throughout the task, the order of the evidence
displayed to the participants in each trial (the ratio between black and white
squares in the grid) was randomized for each participant. In addition, the coin
location on each trial was randomly generated according to the evidence (evidence
only implied the probability of the coin location). This meant that each participant
experienced individual periods of high/low accuracy, which were not time locked to
the evidence quality manipulation.

Model fitting procedure. We used models with increased complexity to explain
advice deviance reported by the participants. The most elaborated model is the
interaction model, described in eq. (4), which assumes that advice deviance is
affected by: systematic bias in confidence (which is in fact the intercept or alpha
parameter), current selection by client (ignored/chosen), relative merit tracked by
comparison with rival (eq. (3)), and the interaction between relative merit and
selection by client. Simpler models included: a mixture model excluding the
interaction parameter, a relative merit model excluding all selection parameters, a
selection model excluding all relative merit parameters and a bias model excluding
all relative merit and selection by client parameters. An additional model was also
tested that was identical to the ‘Interaction’ model but used the magnitude and sign
of relative merit instead of only the sign of relative merit.

We fitted all models to individual advice deviance. We used a cost function, L
(M) to estimate a given model M fit to the data. The cost function compared the
advice deviance estimated with the model M (AdviceDevianceM(t)) and the actual

advice deviance observed in behaviour on each trial (AdviceDevianceData(t)):

L Mð Þ¼ �
X

t¼1::T

log
1

1þabs AdviceDevianceM tð Þ � AdviceDevianceData tð Þð Þ
� �

ð6Þ

Similar to log likelihood cost function, the ratio inside the log is close to one
when the estimation is close to the data and it gets closer to zero when the distance
between estimation and data increases. Therefore, lower values of the cost function
indicate better fit of the model to the data. We used a Markov-Chain Monte Carlo
(MCMC) Metropolis-Hastings algorithm for model fitting and estimation for each
participant60–62. For model comparisons we calculated individual Deviance
Information Criterion61, which uses the distribution of likelihood obtained and
penalizes for increased number of parameters (Supplementary Figure S2). We used
in house Matlab code and the MCMC toolbox for Matlab by Marko Laine (http://
helios.fmi.fi/~lainema/mcmc/#sec-4).

Parameter estimation was done individually by integrating the marginal
distribution of the parameter values, uncovered using the Markov process chain62.
The learning rate parameters estimated using the Interaction model were used in
the aggregated analysis to determine the trial by trial relative merit and separate
trials to positive and negative relative merit. The mean parameter estimations for
all models are reported in table ST1 in the supplementary materials.

MRI data acquisition. Structural and functional MRI data were acquired using
Siemens Avanto 1.5 T scanner equipped with a 32-channel head coil at the
Birkbeck-UCL Centre for Neuroimaging. The echoplanar image) sequence was
acquired in an ascending manner, at an oblique angle (≈ 30°) to the AC–PC line to
decrease the impact of susceptibility artefact in the orbitofrontal cortex63 with the
following acquisition parameters: volumes, 44 2 mm slices, 1 mm slice gap; echo
time = 50 ms; repetition time = 3,740 ms; flip angle = 90°; field of view = 192 mm;
matrix size = 64 × 64. As the time for each block was dependent on the participants’
reaction time, overall functional blocks changed in length and approximately 250
volumes were acquired in about 15 min and 40 s. A structural image was collected
for each participant using MP-RAGE (TR = 2730 ms, TE = 3.57 ms, voxel size =
1 mm3, 176 slices). In addition, a gradient field mapping was acquired for each
participant.

fMRI data analysis. Imaging data were analysed using Matlab (R2013b) and
Statistical Parametric Mapping software (SPM12; Wellcome Trust Centre for
Neuroimaging, London, UK). Images were corrected for field inhomogeneity and
corrected for head motion. They were subsequently realigned, coregistered, nor-
malized to the Montreal Neurological Institute template, spatially smoothed (8 mm
FWHM Gaussian kernel), and high filtered (128 s) following SPM12 standard
preprocessing procedures.

We carried two complementary data analyses. Using the computational
behaviour analysis, we labelled trials according to selection by client (chosen/
ignored) and relative merit (positive/negative). We examined the effect of selection
by client, relative merit and their interaction on brain activity. We used individual
level GLM with stick predictors at the onset of each stage (appraisal, evidence,
advice report, other advice display and outcome) and additional boxcar predictor
1.5 s long ending at the time of advice report confirmation, capturing the motor
button presses. We ran GLMs in which the condition labels (selection by client
(chosen/ignored) and relative merit (positive/negative)) applied to the outcome
stage, appraisal stage and evidence stage separately, to overcome the problem of
correlation between predictors of interest, as the order of our stages was fixed. In
addition, we ran a whole brain parametric modulation analysis with a ‘client
selection switch’ predictor, set to 1 when the client switched from the rival adviser
to the participant, − 1 when switching from the participant to the rival adviser and
0 when the client made the same choice as before.

In a separate analysis we examined how the trial-by-trial relative merit PE-
modulated brain activity. We used a set of variables as parametric modulators of
activity, which included the relative merit PE as the regressor of interest, and
aggregated relative merit, the trial-by-trial prognostic value comparison, client’s
reward prediction error and unsigned participant’s advice as regressors of no
interest. We used different GLMs to estimate the effect of this set of parameter
modulations on the outcome stage, appraisal stage and evidence stage separately.

In ROI analysis we examined event related effects in specific brain region in
different stages within an advice giving trial. Individual β-maps were estimated and
sampled within ROIs using MarsBar SPM toolbox. We used NeuroSynth41 defined
ROIs of the left and right VS. We selected the peak of the VS reverse inference map,
made from 310 studies. We used a 12 mm sphere around the left and right peak
activity as ROI using MarsBar SPM toolbox (MNI coordinates [− 12, 8, − 8], [10, 6,
− 8], z> 22).

To examine the time course of the changes in brain activity in the regions of
interest, we followed previous studies29 and exploited the time jitters to disentangle
the brain activity corresponding to different cognitive processes of interest. We
separated each subject’s time series sampled from the VS into each trial and
resampled each trial to a duration of 15 s, aligned according to the trial stages
(Fig. 1): previous trial’s showdown(stage 5) at time 0, previous trial’s outcome
(stage 6) at time 2 s, appraisal (stage 1) at time 4 s, evidence (stage 2) at time 6 s,
confidence report (stages 3–4) at time 9 s–11 s and current trial’s showdown (stage
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5) at time 13 s (these timings were the mean timings across all trials in all subjects).
The resampling resolution was 100 ms. This temporal realignment allowed the
observation of signal throughout the trial while taking advantage of the random
jitter and fast event-related design. We then performed a GLM at each time point
across trials in each subject. We had one regressor for ‘relative merit PE’ and
another for ‘client selection switch’. We then calculated the mean of the effect
across subjects at each time point and their SEs.

Questionnaires. As follow up for our experiment we sent participants FNE
questionnaire36 to be filled online, to test the link between trait selection perception
and social behaviour, as predicted by social rank theory35. The questionnaire was
sent six months after the main experiment, to make sure there is no effect of the
questionnaires on the performance in the task and vice versa. Participants were
paid for completing the questionnaires. 69 of our original 120 participants filled the
questionnaire, 29 from the fMRI cohort, 15 from the lab cohort and 25 from the
online cohort.

Data Availability. The behavioural data that support the findings of this study are
available from figshare (https://doi.org/10.6084/m9.figshare.5414350.v1)64. The
statistical parametric maps from the neuroimaging part of the experiment are
available from NeuroVault: http://neurovault.org/collections/2204/.
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