100 research outputs found

    Health-Promoting and Health-Risk Behaviors: Theory-Driven Analyses of Multiple Health Behavior Change in Three International Samples

    Get PDF
    Background: Co-occurrence of different behaviors was investigated using the theoretical underpinnings of the Transtheoretical Model, the Theory of Triadic Influence and the concept of Transfer. Purpose: To investigate relationships between different health behaviors' stages of change, how behaviors group, and whether study participants cluster in terms of their behaviors. Method: Relationships across stages for different behaviors were assessed in three studies with N = 3,519, 965, and 310 individuals from the USA and Germany by telephone and internet surveys using correlational analyses, factor analyses, and cluster analyses. Results: Consistently stronger correlations were found between nutrition and physical activity (r = 0.16-0.26, p < 0.01) than between non-smoking and nutrition (r = 0.08-0.16, p < 0.03), or non-smoking and physical activity (r = 0.01-0.21). Principal component analyses of investigated behaviors indicated two factors: a "health-promoting" factor and a "health-risk" factor. Three distinct behavioral patterns were found in the cluster analyses. Conclusion: Our results support the assumption that individuals who are in a higher stage for one behavior are more likely to be in a higher stage for another behavior as well. If the aim is to improve a healthy lifestyle, success in one behavior can be used to facilitate changes in other behaviors--especially if the two behaviors are both health-promoting or health-risky. Moreover, interventions should be targeted towards the different behavioral patterns rather than to single behaviors. This might be achieved by addressing transfer between behaviors

    Identification of Essential Sequences for Cellular Localization in BRMS1 Metastasis Suppressor

    Get PDF
    10 páginas, 5 figuras. PMID: 19649328 [PubMed] PMCID: PMC2713406BACKGROUND: Breast cancer metastasis suppressor 1 (BRMS1) reduces the number and the size of secondary tumours in a mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein. Since cellular distribution could represent a potential mechanism of regulation, we wanted to characterize BRMS1 sequence motifs that might regulate its cellular distribution. According to its amino acids sequence, BRMS1 contain two putative nuclear localization signals, however none of them has been proved to work so far. METHODOLOGY/PRINCIPAL FINDINGS: By using well known in vivo assays to detect both nuclear import and export signal, we have characterized, in the present study, one functional nuclear localisation signal as necessary and sufficient to promote nuclear transport. Additionally, the outcome of a directed yeast two-hybrid assay identify importin alpha6 as a specific partner of BRMS1 thus speculating that BRMS1 nuclear import could be specifically mediated by the reported nuclear transporter. Besides, the combination of a computational searching approach along the utilization of a nuclear export assay, identified a functional motif within the BRMS1 sequence responsible for its nuclear export, that resulted not affected by the highly specific CRM1 inhibitor Leptomycin-B. Interspecies heterokaryon assay demonstrate the capability of BRMS1 to shuttle between the nuclear and cytosolic compartments CONCLUSIONS/SIGNIFICANCE: Our results show for the first time that BRMS1 contains both nuclear import and export signals enabling its nucleo-cytoplasmic shuttling. These findings contributes new data for the understanding of the BRMS1 functions and allow us to speculate that this phenomenon could represent a novel mechanism for regulating the activity of BRMS1 or its associated cytosolic partnersThis work was supported by Spanish Ministerio de Ciencia y Tecnología (Grant SAF2006-10269), Ministerio de Ciencia e Innovación (Grant SAF2008-04048-E) and by a grant from Fundación Mutua Madrileña.Peer reviewe

    The Anti-Proliferative Effects of the CHFR Depend on the Forkhead Associated Domain, but not E3 Ligase Activity Mediated by Ring Finger Domain

    Get PDF
    The CHFR protein comprises fork head associated- (FHA) and RING-finger (RF) domain and is frequently downregulated in human colon and gastric cancers up to 50%. The loss of CHFR mRNA expression is a consequence of promoter methylation, suggesting a tumor suppressor role for this gene in gastrointestinal carcinogenesis. In terms of the biological functions of CHFR, it has been shown to activate cell cycle checkpoint when cells are treated with microtubule depolymerizing agents. Furthermore, CHFR was reported to have E3 ligase activity and promote ubiquitination and degradation of oncogenic proteins such as Aurora A and polo-like kinase 1. However, molecular pathways involved in the tumor suppressive function of CHFR are not yet clear since the two established roles of this protein are likely to inhibit cell growth. In this study, we have identified that the FHA domain of CHFR protein is critical for growth suppressive properties, whereas the RF and cysteine rich domains (Cys) are not required for this function. In contrast, the RF and Cys domains are essential for E3 ligase activity of CHFR. By the use of a cell cycle checkpoint assay, we also confirmed that the FHA domain of CHFR plays an important role in initiating a cell cycle arrest at G2/M, indicating a functional link exists between the anti-proliferative effects and checkpoint function of this tumor suppressor protein via this domain. Collectively, our data show that the checkpoint function of the FHA domain of CHFR is a core component of anti-proliferative properties against the gastrointestinal carcinogenesis

    Nuclear Import and Export Signals of Human Cohesins SA1/STAG1 and SA2/STAG2 Expressed in Saccharomyces cerevisiae

    Get PDF
    Abstract Background: Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown. Methodology/Principal Findings: In silico analysis indicates numerous putative nuclear localization (NLS) and export (NES) signals in the SA proteins, suggesting the possibility of their nucleocytoplasmic shuttling. We studied the functionality of those putative signals by expressing fluorescently tagged SA1 and SA2 in the yeast Saccharomyces cerevisiae. Only the Nterminal NLS turned out to be functional in SA1. In contrast, the SA2 protein has at least two functional NLS and also two functional NES. Depending on the balance between these opposing signals, SA2 resides in the nucleus or is distributed throughout the cell. Validation of the above conclusions in HeLa cells confirmed that the same N-terminal NLS of SA1 is functional in those cells. In contrast, in SA2 the principal NLS functioning in HeLa cells is different from that identified in yeast and is localized to the C-terminus. Conclusions/Significance: This is the first demonstration of the possibility of non-nuclear localization of an SA protein. The reported difference in the organization between the two SA homologues may also be relevant to their partially divergent functions. The mechanisms determining subcellular localization of cohesins are only partially conserved between yeast and human cells

    Centrioles: active players or passengers during mitosis?

    Get PDF
    Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as “the organ for cell division”. However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease
    corecore