81 research outputs found

    Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines

    Get PDF
    A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water us

    Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest

    Get PDF
    During a 1-year measurement period, we recorded the CO2 efflux from stems (RS) and coarse woody roots (RR) of 13–20 common tree species at three study sites at 1,050, 1,890 and 3,050 m a.s.l. in an Andean moist forest. The objective of this work was to study elevation changes of woody tissue CO2 efflux and the relationship to climate variation, site characteristics and growth. Furthermore, we aim to provide insights into important respiration–productivity relationships of a little studied tropical vegetation type. We expected RS and RR to vary with dry and humid season conditions. We further expected RS to vary more than RR due to a more stable soil than air temperature regime. Seasonal variation in woody tissue CO2 efflux was indeed mainly attributable to stems. At the same time, temperature played only a small role in triggering variations in RS. At stand level, the ratio of C release (g C m−2 ground area year−1) between stems and roots varied from 4:1 at 1,050 m to 1:1 at 3,050 m, indicating the increasing prevalence of root activity at high elevations. The fraction of growth respiration from total respiration varied between 10 (3,050 m) and 14% (1,050 m) for stems and between 5 (1,050 m) and 30% (3,050 m) for roots. Our results show that respiratory activity and hence productivity is not driven by low temperatures towards higher elevations in this tropical montane forest. We suggest that future studies should examine the limitation of carbohydrate supply from leaves as a driver for the changes in respiratory activity with elevation

    Temperature sensitivity of soil respiration rates enhanced by microbial community response

    Get PDF
    Soils store about four times as much carbon as plant biomass(1), and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide(2). Short-term experiments have shown that soil microbial respiration increases exponentially with temperature(3). This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change(4). The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease(5-7) or increase(8,9) warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid-to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.Output Type: Lette

    The global spectrum of plant form and function

    Full text link

    Abscisic Acid Content and Osmotic Relations of Salt-Stressed Grapevine Leaves

    No full text

    Improved Extraction of Abscisic Acid From Plant Tissue

    No full text
    corecore