621 research outputs found

    Understanding individual and population-level effects of plastic pollution on marine megafauna

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordPlastic pollution is increasing rapidly throughout the world’s oceans and is considered a major threat to marine wildlife and ecosystems. Although known to cause lethal or sub-lethal effects to vulnerable marine megafauna, population-level impacts of plastic pollution have not been thoroughly investigated. Here, we compiled and evaluated information from peer-reviewed studies that reported deleterious individual-level effects of plastic pollution on air-breathing marine megafauna (i.e. seabirds, marine mammals, and sea turtles) worldwide, highlighting those that assessed potential population-level effects. Lethal and sub-lethal individual-level effects included drowning, starvation, gastrointestinal tract damage, malnutrition, physical injury, reduced mobility, and physiological stress, resulting in reduced energy acquisition and assimilation, compromised health, reproductive impairment, and mortality. We found 47 studies published between 1969 and 2020 that considered population-level effects of plastic entanglement (n = 26), ingestion (n = 19), or both (n = 2). Of these, 7 inferred population-level effects (n = 6, entanglement; n = 1, ingestion), whereas 19 lacked evidence for effects (n = 12, entanglement; n = 6, ingestion; n = 1, both). However, no study in the past 50 yr reported direct evidence of population-level effects. Despite increased interest in and awareness of the presence of plastic pollution throughout the world’s oceans, the extent and magnitude of demographic impacts on marine megafauna remains largely unassessed and therefore unknown, in contrast to well-documented effects on individuals. Addressing this major assessment gap will allow researchers and managers to compare relative effects of multiple threats—including plastic pollution—on marine megafauna populations, thus providing appropriate context for strategic conservation priority-setting.Natural Environment Research Council (NERC

    Audit of the change in the on-call practices in neuroradiology and factors affecting it

    Get PDF
    BACKGROUND: On call practices had recently changed at the Newcastle General Hospital to accommodate increasing CT scan requests and reduce the workloads of the radiologists. In the new system, the person responsible for dealing with the out of hours requests for imaging changed from the neuroradiologist to the neuroradiographer. This audit was conducted to assess any change in the departmental workload as a result of this change. METHODS: The audit was carried out over a period of six months and data was collected from the on-call booklets which the neuroradiographers maintained and the log books maintained in the department of neuroradiology. Details of the imaging requested; the source of the request, the reason for the request and the results of the scans were recorded and analysed using Microsoft Excel™. RESULTS: The number of CT scans requested from the A&E went up by 73.4% after the change in practice and majority of these increases were due to increased requests for scans on head injuries which increased by 122%. Although this was not statistically significant due to lack of study power, it is clinically relevant. CONCLUSION: The increase in the number of CT scans for head injuries reflects a general change in practice in management of head injuries in the UK. Changing the gatekeeper from radiologist to radiographer was associated with an increase in CT rate, particularly for head injuries. Other factors such as clinician seniority and a greater awareness of the NICE guidelines may have also contributed

    Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice

    Get PDF
    <p>Background: Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch.</p> <p>Results: Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time.</p> <p>Conclusions: Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.</p&gt

    Updating requirements for Endangered, Threatened and Protected species MSC Fisheries Standard v3.0 to operationalise best practices

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Bycatch in fisheries is a key threat to non-target marine species, particularly for those species that have life histories with low productivity or poor conservation status. In this paper, the requirements of the new Marine Stewardship Council (MSC) Fisheries Standard (hereafter “the Standard”) are summarised relevant to Endangered, Threatened and Protected (ETP) species. This covers both how species are designated as ETP, and how performance of management is assessed with respect to ETP species, when scoring fisheries against the Standard. The process used to select these requirements is described, including a review of the requirements for earlier versions of the Standard and the scoring of these requirements in assessment reports for a selection of fisheries that have achieved MSC certification. The review identified a lack of consistency in the implementation of scoring guidelines, which was in part due to a lack of clarity in the requirements of the Standard. The revised Standard has been designed to achieve more consistent implementation of the requirements with respect to management of impacts on ETP species, and to align the requirements more closely with global best practice. The requirements may be used as a template for fisheries managers seeking to prioritise bycatch species for improved management and setting more specific and measurable objectives in relation to population status and minimising mortalities.Marine Stewardship Counci

    Global distribution of two fungal pathogens threatening endangered sea turtles

    Get PDF
    This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD

    Adapting the Marine Stewardship Council risk-based framework to estimate impacts on seabirds, marine mammals, marine turtles and sea snakes

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Information available on impacts of fisheries on target or bycatch species varies greatly, requiring development of risk assessment tools to determine potentially unacceptable levels. Seabirds, marine mammals, marine turtles and sea snakes are particularly vulnerable given their extreme life histories, and data are often lacking on their populations or bycatch rates with which to quantify fisheries impacts. The Marine Stewardship Council (MSC) use a semi-quantitative Productivity Susceptibility Analysis (PSA) that is applicable to all species, target and non-target, to calculate risk of impact and to provide a score for relevant Performance Indicators for fisheries undertaking certification. The most recent MSC Fisheries Standard Review provided an opportunity to test the appropriateness of using this tool and whether it was sufficiently precautionary for seabirds, marine mammals and reptiles . The existing PSA was tested on a range of species and fisheries and reviewed in relation to literature on these species groups. New taxa-specific PSAs were produced and then reviewed by taxa-specific experts and other relevant stakeholders (e.g., assessors, fisheries managers, non-governmental conservation organizations). The conclusions of the Fishery Standard Review process were that the new taxa-specific PSAs were more appropriate than the existing PSA for assessing fisheries risk for seabirds, marine mammals and reptiles, and that, as intended, they resulted in precautionary outcomes. The taxa-specific PSAs provide useful tools for true data-deficient fisheries to assess relative risk of impact. Where some data are available, the MSC could consider developing or adapting other approaches to support robust and relevant risk assessments.Marine Stewardship Counci

    Global Conservation Priorities for Marine Turtles

    Get PDF
    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa

    Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    Get PDF
    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic

    Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    Get PDF
    Background: The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks
    corecore