1,599 research outputs found

    Design of cold-formed stainless steel lipped channel sections with web openings subjected to web crippling under end-one-flange loading condition

    Get PDF
    This article presents a numerical investigation on the web crippling strength of cold-formed stainless steel lipped channel sections with circular web openings under end-one-flange loading condition. In order to take into account the influence of the circular web openings, a parametric study involving 1992 finite element analyses was performed, covering duplex EN1.4462, austenitic EN1.4404 and ferritic EN1.4003 stainless steel grades; from the results of the parametric study, strength reduction factor equations are proposed. The web crippling strengths predicted by the reduction factor equations are first compared to the strengths calculated using the equations recently proposed for cold-formed carbon steel lipped channel sections. It is demonstrated that the strength reduction factor equations proposed for cold-formed carbon steel are unconservative for the stainless steel grades by up to 7%. Unified strength reduction factor equations are then proposed that can be applied to all three stainless steel grades

    Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Get PDF
    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    Meaning behind measurement : self-comparisons affect responses to health related quality of life questionnaires

    Get PDF
    Purpose The subjective nature of quality of life is particularly pertinent to the domain of health-related quality of life (HRQOL) research. The extent to which participants’ responses are affected by subjective information and personal reference frames is unknown. This study investigated how an elderly population living with a chronic metabolic bone disorder evaluated self-reported quality of life. Methods Participants (n = 1,331) in a multi-centre randomised controlled trial for the treatment of Paget’s disease completed annual HRQOL questionnaires, including the SF-36, EQ-5D and HAQ. Supplementary questions were added to reveal implicit reference frames used when making HRQOL evaluations. Twenty-one participants (11 male, 10 female, aged 59–91 years) were interviewed retrospectively about their responses to the supplementary questions, using cognitive interviewing techniques and semi-structured topic guides. Results The interviews revealed that participants used complex and interconnected reference frames to promote response shift when making quality of life evaluations. The choice of reference frame often reflected external factors unrelated to individual health. Many participants also stated that they were unclear whether to report general or disease-related HRQOL. Conclusions It is important, especially in clinical trials, to provide instructions clarifying whether ‘quality of life’ refers to disease-related HRQOL. Information on selfcomparison reference frames is necessary for the interpretation of responses to questions about HRQOL.The Chief Scientist Office of the Scottish Government Health Directorates, The PRISM funding bodies (the Arthritis Research Campaign, the National Association for the Relief of Paget’s disease and the Alliance for Better Bone Health)Peer reviewedAuthor final versio

    Experimental investigation of classical and quantum correlations under decoherence

    Full text link
    It is well known that many operations in quantum information processing depend largely on a special kind of quantum correlation, that is, entanglement. However, there are also quantum tasks that display the quantum advantage without entanglement. Distinguishing classical and quantum correlations in quantum systems is therefore of both fundamental and practical importance. In consideration of the unavoidable interaction between correlated systems and the environment, understanding the dynamics of correlations would stimulate great interest. In this study, we investigate the dynamics of different kinds of bipartite correlations in an all-optical experimental setup. The sudden change in behaviour in the decay rates of correlations and their immunity against certain decoherences are shown. Moreover, quantum correlation is observed to be larger than classical correlation, which disproves the early conjecture that classical correlation is always greater than quantum correlation. Our observations may be important for quantum information processing.Comment: 7 pages, 4 figures, to appear in Nature Communication

    Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins

    Full text link
    The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed matter systems, potentially including high-temperature superconductivity. However, many properties of exotic strongly correlated spin systems (e.g., spin liquids) have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N~30 particles. Feynman divined that a quantum simulator - a special-purpose "analog" processor built using quantum particles (qubits) - would be inherently adept at such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach. However, simulations of quantum magnetism allowing controlled, tunable interactions between spins localized on 2D and 3D lattices of more than a few 10's of qubits have yet to be demonstrated, owing in part to the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction J_ij on a naturally occurring 2D triangular crystal lattice of hundreds of spin-1/2 particles (9Be+ ions stored in a Penning trap), a computationally relevant scale more than an order of magnitude larger than existing experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J_ij ~ 1/d_ij^a, where a is tunable over 0<a<3; d_ij is the distance between spin pairs. These power-laws correspond physically to infinite-range (a=0), Coulomb-like (a=1), monopole-dipole (a=2) and dipole-dipole (a=3) couplings. Experimentally, we demonstrate excellent agreement with theory for 0.05<a<1.4. This demonstration coupled with the high spin-count, excellent quantum control and low technical complexity of the Penning trap brings within reach simulation of interesting and otherwise computationally intractable problems in quantum magnetism.Comment: 10 pages, 10 figures; article plus Supplementary Material

    Preferential regulation of stably expressed genes in the human genome suggests a widespread expression buffering role of microRNAs

    Get PDF
    In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes (FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within the 3'-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the number of transcription factor binding sites in the promoter region, which suggests that coordination between transcription factors and miRNAs leads to balanced responses to external perturbations

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection
    corecore