287 research outputs found

    A Study of Single-Particle Parity-Nonconserving Nuclear Matrix Elements

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    A Study of Single-Particle Parity-Nonconserving Nuclear Matrix Elements

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Gluon Propagator on Coarse Lattices in Laplacian Gauges

    Get PDF
    The Laplacian gauge is a nonperturbative gauge fixing that reduces to Landau gauge in the asymptotic limit. Like Landau gauge, it respects Lorentz invariance, but it is free of Gribov copies; the gauge fixing is unambiguous. In this paper we study the infrared behavior of the lattice gluon propagator in Laplacian gauge by using a variety of lattices with spacings from a=0.125a = 0.125 to 0.35 fm, to explore finite volume and discretization effects. Three different implementations of the Laplacian gauge are defined and compared. The Laplacian gauge propagator has already been claimed to be insensitive to finite volume effects and this is tested on lattices with large volumes.Comment: RevTex 4.0, 14 pages, 9 colour figures; Correction to Reference

    Influence of Fabrication Technique on the Fiber Pushout Behavior in a Sapphire-Reinforced Nial Matrix Composite

    Get PDF
    Directional solidification (DS) of \u27\u27powder-cloth\u27\u27 (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial \u27\u27pseudoelastic\u27\u27 response, followed by an \u27\u27inelastic\u27\u27 response, and finally a \u27\u27frictional\u27\u27 sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 mu m) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid-state fabrication techniques

    A Study of Single-Particle Parity-Nonconserving Nuclear Matrix Elements

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    On practical problems to compute the ghost propagator in SU(2) lattice gauge theory

    Full text link
    In SU(2) lattice pure gauge theory we study numerically the dependence of the ghost propagator G(p) on the choice of Gribov copies in Lorentz (or Landau) gauge. We find that the effect of Gribov copies is essential in the scaling window region, however, it tends to decrease with increasing beta. On the other hand, we find that at larger beta-values very strong fluctuations appear which can make problematic the calculation of the ghost propagator.Comment: 15 pages, 5 postscript figures. 2 Figures added Revised version as to be published in Phys.Rev.

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    The Infrared Behaviour of the Pure Yang-Mills Green Functions

    Full text link
    We review the infrared properties of the pure Yang-Mills correlators and discuss recent results concerning the two classes of low-momentum solutions for them reported in literature; i.e. decoupling and scaling solutions. We will mainly focuss on the Landau gauge and pay special attention to the results inferred from the analysis of the Dyson-Schwinger equations of the theory and from "{\it quenched}" lattice QCD. The results obtained from properly interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
    corecore