1,735 research outputs found

    The Optical - Infrared Colors of CORALS QSOs: Searching for Dust Reddening Associated With High Redshift Damped Lyman Alpha Systems

    Full text link
    The presence of dust in quasar absorbers, such as damped Lyman alpha (DLA) systems, may cause the background QSO to appear reddened. We investigate the extent of this potential reddening by comparing the optical-to-infrared (IR) colors of QSOs with and without intervening absorbers. Our QSO sample is based on the Complete Optical and Radio Absorption Line System (CORALS) survey of Ellison et al (2001). We have obtained near-simultaneous B and K band magnitudes for subset of the CORALS sample and supplemented our observations with further measurements published in the literature. To account for redshift-related color changes, the B-K colors are normalized using the Sloan Digital Sky Survey (SDSS) QSO composite. The mean normalized B-K color of the DLA sub-sample is +0.12, whereas the mean for the no-DLA sample is -0.10; both distributions have RMS scatters ~0.5. Neither a student's T-test nor a KS test indicate that there is any significant difference between the two color distributions. Based on simulations which redden the colors of QSOs with intervening DLAs, we determine a reddening limit which corresponds to E(B-V) < 0.04 (SMC-like extinction) at 99% confidence (3 sigma), assuming that E(B-V) is the same for all DLAs. Finally, we do not find any general correlation between absorber properties (such as [Fe/Zn] or neutral hydrogen column density) and B-K color. One of these two QSOs shows evidence for strong associated absorption from X-ray observations, an alternative explanation for its very red color. We conclude that the presence of intervening galaxies causes a minimal reddening of the background QSO.Comment: Accepted for publication in A

    A Spitzer Space Telescope Study of SN 2003gd: Still No Direct Evidence that Core-Collapse Supernovae are Major Dust Factories

    Get PDF
    We present a new, detailed analysis of late-time mid-infrared (IR) observations of the Type II-P supernova (SN) 2003gd. At about 16 months after the explosion, the mid-IR flux is consistent with emission from 4 x 10^(-5) M(solar) of newly condensed dust in the ejecta. At 22 months emission from point-like sources close to the SN position was detected at 8 microns and 24 microns. By 42 months the 24 micron flux had faded. Considerations of luminosity and source size rule out the ejecta of SN 2003gd as the main origin of the emission at 22 months. A possible alternative explanation for the emission at this later epoch is an IR echo from pre-existing circumstellar or interstellar dust. We conclude that, contrary to the claim of Sugerman et al. (2006, Science, 313, 196), the mid-IR emission from SN 2003gd does not support the presence of 0.02 M(solar) of newly formed dust in the ejecta. There is, as yet, no direct evidence that core-collapse supernovae are major dust factories.Comment: 26 pages, 2 figures, 2 tables, accepted for publication in Astrophysical Journa

    The High Frequency Instrument of Planck: Requirements and Design

    Get PDF
    The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum

    Use of High Sensitivity Bolometers for Astronomy: Planck High Frequency Instrument

    Get PDF
    The Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. It is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The detectors of its High Frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. This impacts the bolometer design as well as other elements: The cooling system must present outstanding temperature stability, and the amplification chain must show a flat noise spectrum down to very low frequencies

    The Evolution of Dust Opacity in Galaxies

    Get PDF
    (Abridged) We investigate the evolution of the opacity of galaxies as a function of redshift, using simple assumptions about the metal and dust enrichment of the gas and the distribution of dust in galaxies. We use an iterative procedure to reconstruct the intrinsic Star Formation Rate (SFR) density of galaxies with redshift, by applying dust obscuration corrections to the observed UV emission. The iterative procedure converges to multiple solutions for the intrinsic SFR density, divided into two basic classes. The first class of solutions predicts relatively large UV attenuation at high redshift, with A(1500 A)=1.9 mag at z~3, and smaller attenuations at z<1, with A(2800 A)=1.25 mag. The SFR density of this set of solutions is constant for z>~1.2 and declines for z<1.2; it resembles in shape the ``monolithic collapse'' scenario for star formation. The second class of solutions predicts relatively low UV attenuations at high redshift, with A(1500 A)=0.75 mag at z~3, and larger attenuations at z<1, with A(2800 A)=1.50 mag. The SFR density in this case has a peak at z~1.2. The advantages and shortcomings of both classes are analyzed in the light of available observational constraints, including the opacity of galaxies at 0<z<1 and the intensity and spectral energy distribution of the cosmic infrared background from the COBE DIRBE and FIRAS data. We conclude that both classes of models are acceptable within the current uncertainties, but the ``monolithic collapse'' class matches the available observations better than the other one. We also investigate the dependence of our solutions on the different model assumptions.Comment: 54 pages, includes 1 embedded postscript Table and 22 embedded postscript Figures, Latex, uses AAS Latex macro. Accepted for publication in the Astrophysical Journa

    SIGMA and XTE observations of the soft X-ray transient XTEJ1755-324

    Full text link
    We present observations of the X-ray transient XTEJ1755-324 performed during summer 1997 with the XTE satellite and with the SIGMA hard X-ray telescope onboard the GRANAT observatory. The source was first detected in soft X-rays with XTE on July 25 1997 with a rather soft X-ray spectrum and its outburst was monitored in soft X-rays up to November 1997. On September 16 it was first detected in hard X-rays by the French soft gamma ray telescope SIGMA during a Galactic Center observation. The flux was stronger on September 16 and 17 reaching a level of about 110 mCrab in the 40-80 keV energy band. On the same days the photon index of the spectrum was determined to be alpha =-2.3 +/- 0.9 (1 sigma error) while the 40-150 keV luminosity was about 8 x 10^{36} erg/s for a distance of 8.5 kpc. SIGMA and XTE results on this source indicate that this source had an ultrasoft-like state during its main outburst and a harder secondary outburst in September. These characteristics make the source similar to X-Nova Muscae 1991, a well known black hole candidate.Comment: 19 pages LaTeX, 6 Postscript figures included, Accepted by Astrophysical Journa

    Out-of-equilibrium states as statistical equilibria of an effective dynamics

    Full text link
    We study the formation of coherent structures in a system with long-range interactions where particles moving on a circle interact through a repulsive cosine potential. Non equilibrium structures are shown to correspond to statistical equilibria of an effective dynamics, which is derived using averaging techniques. This simple behavior might be a prototype of others observed in more complicated systems with long-range interactions, like two-dimensional incompressible fluids or self-gravitating systems.Comment: 4 figure

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure
    corecore