15,091 research outputs found

    Laser-Doppler gas-velocity instrument

    Get PDF
    Three-D instrument using a laser light source measures both turbulence and mean velocity of subsonic and supersonic gas flows. This instrument is based on the measurement of the Doppler frequency shift of light waves scattered by moving particles in the gas stream

    Laser Doppler velocity instrument

    Get PDF
    Laser Doppler velocity instrument for measuring turbulence and mean velocity in subsonic and supersonic gas flow

    The use of real time digital simulation and hardware in the loop to de-risk novel control algorithms

    Get PDF
    Low power demonstrators are commonly used to validate novel control algorithms. However, the response of the demonstrator to network transients and faults is often unexplored. The importance of this work has, in the past, justified facilities such as the T45 Shore Integration Test Facility (SITF) at the Electric Ship Technology Demonstrator (ESTD). This paper presents the use of real time digital simulation and hardware in the loop to de-risk a innovative control algorithm with respect to network transients and faults. A novel feature of the study is the modelling of events at the power electronics level (time steps of circa 2 ÎĽs) and the system level (time steps of circa 50 ÎĽs)

    Evaluation Report; YouTube Takeover project (Shift.ms)

    Get PDF
    One of Shift.ms’ innovative digital interventions was our Twitter takeover: each weekend control of our account was handed to a different person from the MS community. People with MS (MSers) report that interacting with a different individual each week helped reduce feelings of isolation and reinforced a sense of community. This report presents the findings from an evaluation of The YouTube Takeover co-produced by the Centre for Health Promotion Research, Leeds Beckett University and Shift.ms

    P and T Violation From Certain Dimension Eight Weinberg Operators

    Full text link
    Dimension eight operators of the Weinberg type have been shown to give important contributions to CP violating phenomena, such as the electric dipole moment of the neutron. In this note we show how operators related to these (and expected to occur on equal footing) can give rise to time-reversal violating phenomena such as atomic electric dipole moments. We also estimate the induced parity violating phenomena such as small ``wrong'' parity admixtures in atomic states and find that they are negligible. Uses harvmac.tex and epsf.tex; one figure submitted as a uuencoded, compressed EPS file.Comment: 6 pages, EFI-92-5

    Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide

    Full text link
    Materials that undergo reversible metal-insulator transitions are obvious candidates for new generations of devices. For such potential to be realised, the underlying microscopic mechanisms of such transitions must be fully determined. In this work we probe the correlation between the energy landscape and electronic structure of the metal-insulator transition of vanadium dioxide and the atomic motions occurring using first principles calculations and high resolution X-ray diffraction. Calculations find an energy barrier between the high and low temperature phases corresponding to contraction followed by expansion of the distances between vanadium atoms on neighbouring sub-lattices. X-ray diffraction reveals anisotropic strain broadening in the low temperature structure's crystal planes, however only for those with spacings affected by this compression/expansion. GW calculations reveal that traversing this barrier destabilises the bonding/anti-bonding splitting of the low temperature phase. This precise atomic description of the origin of the energy barrier separating the two structures will facilitate more precise control over the transition characteristics for new applications and devices.Comment: 11 Pages, 8 Figure

    Hypergraph Acyclicity and Propositional Model Counting

    Full text link
    We show that the propositional model counting problem #SAT for CNF- formulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore, we present a polynomial time algorithm that computes a disjoint branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally, we show that some slight extensions of the class of hypergraphs with disjoint branches decompositions lead to intractable #SAT, leaving open how to generalize the counting result of this paper

    A quasilocal calculation of tidal heating

    Full text link
    We present a method for computing the flux of energy through a closed surface containing a gravitating system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two applications: a calculation of (i) the energy flux, via gravitational waves, through a surface near infinity and (ii) the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows how such methods can be used to study tidal effects in isolated gravitating systems.Comment: REVTex, 4 pages, 1 typo fixed, standard sign convention adopted for the Newtonian potential, a couple of lines added to the discussion of gauge dependent term

    Making graphene visible

    Full text link
    Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of silicon wafers with a certain thickness of silicon dioxide. We study graphene's visibility and show that it depends strongly on both thickness of silicon dioxide and light wavelength. We have found that by using monochromatic illumination, graphene can be isolated for any silicon dioxide thickness, albeit 300 nm (the current standard) and, especially, approx. 100 nm are most suitable for its visual detection. By using a Fresnel-law-based model, we quantitatively describe the experimental data without any fitting parameters.Comment: Since v1: minor changes to text and figures to improve clarity; references added. Submitted to Applied Physics Letters, 30-Apr-07. 3 pages, 3 figure
    • …
    corecore