694 research outputs found

    Toward Hole-Spin Qubits in Si p -MOSFETs within a Planar CMOS Foundry Technology

    Get PDF
    Hole spins in semiconductor quantum dots represent a viable route for the implementation of electrically controlled qubits. In particular, the qubit implementation based on Si p-MOSFETs offers great potentialities in terms of integration with the control electronics and long-term scalability. Moreover, the future down scaling of these devices will possibly improve the performance of both the classical (control) and quantum components of such monolithically integrated circuits. Here, we use a multiscale approach to simulate a hole-spin qubit in a down-scaled Si-channel p-MOSFET, the structure of which is based on a commercial 22-nm fully depleted silicon-on-insulator device. Our calculations show the formation of well-defined hole quantum dots within the Si channel and the possibility of a general electrical control, with Rabi frequencies of the order of 100MHz for realistic field values. A crucial role of the channel aspect ratio is also demonstrated, as well as the presence of a favorable parameter range for the qubit manipulation

    Finite-element analysis for photoelastic tactile sensors

    Get PDF
    Abstract -In this paper, a photoelastic tactile transducer is modelled and analyzed using Finite-Element Analysis (F'EA). The effects of both normal and tangential forces are considered. Two different boundary conditions are examined for a transducer whose compliant protective layer has different mechanical properties from the photoelastic layer

    Munc18c provides stimulus-selective regulation of GLUT4 but not fatty acid transporter trafficking in skeletal muscle

    Get PDF
    Insulin-, and contraction-induced GLUT4 and fatty acid (FA) transporter translocation may share common trafficking mechanisms. Our objective was to examine the effects of partial Munc18c ablation on muscle glucose and FA transport, FA oxidation, GLUT4 and FA transporter (FAT/CD36, FAB-Ppm, FATP1, FATP4) trafficking to the sarcolemma, and FAT/CD36 to mitochondria. In Munc18c(-/+) mice, insulin-stimulated glucose transport and GLUT4 sarcolemmal appearance were impaired, but were unaffected by contraction. Insulin- and contraction-stimulated FA transport, sarcolemmal FA transporter appearance, and contraction-mediated mitochondrial FAT/CD36 were increased normally in Munc18c(-/+) mice. Hence, Munc18c provides stimulus-specific regulation of GLUT4 trafficking, but not FA transporter trafficking

    Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake independent of AMPK

    Get PDF
    Contraction-induced glucose uptake is only partly mediated by AMPK activation. We examined whether the diacylglycerol-sensitive protein kinase D (PKD; also known as novel PKC isoform mu) is also involved in the regulation of glucose uptake in the contracting heart. As an experimental model, we used suspensions of cardiac myocytes, which were electrically stimulated to contract or treated with the contraction-mimicking agent oligomycin. Induction of contraction at 4 Hz in cardiac myocytes or treatment with 1 mu M oligomycin enhanced (i) autophosphorylation of PKD at Ser916 by 5.1- and 3.8-fold, respectively, (ii) phosphorylation of PKD's downstream target cardiac-troponin-I (cTnI) by 2.9- and 2.1-fold, respectively, and (iii) enzymatic activity of immunoprecipitated PKD towards the substrate peptide syntide-2 each by 1.5-fold. Although AMPK was also activated under these same conditions, in vitro phosphorylation assays and studies with cardiac myocytes from AMPK alpha 2(-/-) mice indicated that activation of PKD occurs independent of AMPK activation. CaMKK beta, and the cardiac-specific PKC isoforms alpha, beta, and epsilon were excluded as upstream kinases for PKD in contraction signaling because none of these kinases were activated by oligomycin. Stimulation of glucose uptake and induction of GLUT4 translocation in cardiac myocytes by contraction and oligomycin each were sensitive to inhibition by the PKC/PKD inhibitors staurosporin and calphostin-C. Together, these data elude to a role of PKD in contraction-induced GLUT4 translocation. Finally, the combined actions of PKD on cTnI phosphorylation and on GLUT4 translocation would efficiently link accelerated contraction mechanics to increased energy production when the heart is forced to increase its contractile activity

    Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice

    Get PDF
    Aim: The increase in skeletal muscle fatty acid metabolism during exercise has been associated with the release of calcium. We examined whether this increase in fatty acid oxidation was attributable to a calcium-induced translocation of the fatty acid transporter CD36 to the sarcolemma, thereby providing an enhanced influx of fatty acids to increase their oxidation.Methods: Calcium release was triggered by caffeine (3 mM) to examine fatty acid oxidation in intact soleus muscles of WT and CD36-KO mice, while fatty acid transport and mitochondrial fatty acid oxidation were examined in giant vesicles and isolated mitochondria, respectively, from caffeine-perfused hindlimb muscles of WT and CD36-KO mice. Western blotting was used to examine calcium-induced signalling.Results: In WT, caffeine stimulated muscle palmitate oxidation (+136%), but this was blunted in CD36-KO mice (-70%). Dantrolene inhibited (WT) or abolished (CD36-KO) caffeine-induced palmitate oxidation. In muscle, caffeine-stimulated palmitate oxidation was not attributable to altered mitochondrial palmitate oxidation. Instead, in WT, caffeine increased palmitate transport (+55%) and the translocation of fatty acid transporters CD36, FABPpm, FATP1 and FATP4 (26-70%) to the sarcolemma. In CD36-KO mice, caffeine-stimulated FABPpm, and FATP1 and 4 translocations were normal, but palmitate transport was blunted (-70%), comparable to the reductions in muscle palmitate oxidation. Caffeine did not alter the calcium-/calmodulin-dependent protein kinase II phosphorylation but did increase the phosphorylation of AMPK and acetyl-CoA carboxylase comparably in WT and CD36-KO.Conclusion: These studies indicate that sarcolemmal CD36-mediated fatty acid transport is a primary mediator of the calcium-induced increase in muscle fatty acid oxidation

    Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1 alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats

    Get PDF
    Aims/hypothesis Reductions in peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1 alpha) levels have been associated with the skeletal muscle insulin resistance. However, in vivo, the therapeutic potential of PGC-1 alpha has met with failure, as supra-physiological overexpression of PGC-1 alpha induced insulin resistance, due to fatty acid translocase (FAT)-mediated lipid accumulation. Based on physiological and metabolic considerations, we hypothesised that a modest increase in PGC-1 alpha levels would limit FAT upregulation and improve lipid metabolism and insulin sensitivity, although these effects may differ in lean and insulin-resistant muscle. Methods Pgc-1 alpha was transfected into lean and obese Zucker rat muscles. Two weeks later we examined mitochondrial biogenesis, intramuscular lipids (triacylglycerol, diacylglycerol, ceramide), GLUT4 and FAT levels, insulin-stimulated glucose transport and signalling protein phosphorylation (thymoma viral proto-oncogene 2 [Akt2], Akt substrate of 160 kDa [AS160]), and fatty acid oxidation in subsarcolemmal and intermyofibrillar mitochondria. Results Electrotransfection yielded physiologically relevant increases in Pgc-1 alpha (also known as Ppargc1a) mRNA and protein (similar to 25%) in lean and obese muscle. This induced mitochondrial biogenesis, and increased FAT and GLUT4 levels, insulin-stimulated glucose transport, and Akt2 and AS160 phosphorylation in lean and obese animals, while bioactive intramuscular lipids were only reduced in obese muscle. Concurrently, PGC-1 alpha increased palmitate oxidation in subsarcolemmal, but not in intermyofibrillar mitochondria, in both groups. In obese compared with lean animals, the PGC-1 alpha-induced improvement in insulin-stimulated glucose transport was smaller, but intramuscular lipid reduction was greater. Conclusions/interpretations Increases in PGC-1 alpha levels, similar to those that can be induced by physiological stimuli, altered intramuscular lipids and improved fatty acid oxidation, insulin signalling and insulin-stimulated glucose transport, albeit to different extents in lean and insulin-resistant muscle. These positive effects are probably attributable to limiting the PGC-1 alpha-induced increase in FAT, thereby preventing bioactive lipid accumulation as has occurred in transgenic PGC-1 alpha animals

    Hematopoietic Cell–Restricted Deletion of CD36 Reduces High-Fat Diet–Induced Macrophage Infiltration and Improves Insulin Signaling in Adipose Tissue

    Get PDF
    OBJECTIVE: The fatty acid translocase and scavenger receptor CD36 is important in the recognition and uptake of lipids. Accordingly, we hypothesized that it plays a role in saturated fatty acid-induced macrophage lipid accumulation and proinflammatory activation. RESEARCH DESIGN AND METHODS: In vitro, the effect of CD36 inhibition and deletion in lipid-induced macrophage inflammation was assessed using the putative CD36 inhibitor, sulfosuccinimidyl oleate (SSO), and bone marrow-derived macrophages from mice with (CD36KO) or without (wild-type) global deletion of CD36. To investigate whether deletion of macrophage CD36 would improve insulin sensitivity in vivo, wild-type mice were transplanted with bone marrow from CD36KO or wild-type mice and then fed a standard or high-fat diet (HFD) for 20 weeks. RESULTS: SSO treatment markedly reduced saturated fatty acid-induced lipid accumulation and inflammation in RAW264.7 macrophages. Mice harboring CD36-specific deletion in hematopoietic-derived cells (HSC CD36KO) fed an HFD displayed improved insulin signaling and reduced macrophage infiltration in adipose tissue compared with wild-type mice, but this did not translate into protection against HFD-induced whole-body insulin resistance. Contrary to our hypothesis and our results using SSO in RAW264.7 macrophages, neither saturated fatty acid-induced lipid accumulation nor inflammation was reduced when comparing CD36KO with wild-type bone marrow-derived macrophages. CONCLUSIONS: Although CD36 does not appear important in saturated fatty acid-induced macrophage lipid accumulation, our study uncovers a novel role for CD36 in the migration of proinflammatory phagocytes to adipose tissue in obesity, with a concomitant improvement in insulin action
    corecore