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Insulin-, and contraction-induced GLUT4 and fatty acid (FA) transporter translocation may share
common trafficking mechanisms. Our objective was to examine the effects of partial Munc18c abla-
tion on muscle glucose and FA transport, FA oxidation, GLUT4 and FA transporter (FAT/CD36, FAB-
Ppm, FATP1, FATP4) trafficking to the sarcolemma, and FAT/CD36 to mitochondria. In Munc18c�/+

mice, insulin-stimulated glucose transport and GLUT4 sarcolemmal appearance were impaired,
but were unaffected by contraction. Insulin- and contraction-stimulated FA transport, sarcolemmal
FA transporter appearance, and contraction-mediated mitochondrial FAT/CD36 were increased nor-
mally in Munc18c�/+ mice. Hence, Munc18c provides stimulus-specific regulation of GLUT4 traffick-
ing, but not FA transporter trafficking.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The clearance of glucose and long chain fatty acids (FA) from the
circulation are important regulatory processes for maintaining
metabolic homeostasis. Transport of glucose and FA into the cell
occur via highly regulated protein-mediated mechanisms involv-
ing glucose transporter GLUT4 (cf. [1,2]) and selected FA transport-
ers, including fatty acid translocase (FAT/CD36), plasma membrane
associated fatty acid binding protein (FABPpm), and the family of
fatty acid transporter proteins (FATP 1–6) (cf. [3]). During muscle
contraction FAT/CD36 is also translocated to the mitochondria,
contributing to upregulating mitochondrial FA oxidation (cf. [3]).

The dysregulation of both glucose and FA transport, and the traf-
ficking of their transport proteins, are implicated in skeletal muscle
insulin resistance (cf. [3]). However, the signaling pathways in-
chemical Societies. Published by E
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volved in the translocation of FA transporters to the plasma mem-
brane (PM) are largely unknown, although in muscle FAT/CD36
may share some similarities to the insulin- and contraction-medi-
ated signaling cascades of GLUT4 (cf. [3,4]). However, in cardiac
cells, independent signaling mechanisms do exist for GLUT4 and
FAT/CD36 [5,6]. Whether GLUT4 and FA transporter trafficking to
the PM share similar mechanisms remains to be determined.

The subcellullar trafficking of GLUT4 to the PM is far better char-
acterized than for FA transporters. GLUT4 trafficking is a vesicle-
mediated process following the soluble N-ethylmaleimide-sensi-
tive factor-attachment protein receptor (SNARE) hypothesis where
vesicle associated SNARE (vSNARE) proteins associate with compli-
mentary target SNAREs (tSNARE) at the PM (cf. [7]). Formation of
the vSNARE–tSNARE complex enables docking, fusion, and integra-
tion of GLUT4 vesicles into the PM. A number of accessory proteins
are also involved in the formation of the SNARE complex, including
vesicle associated membrane proteins (VAMPs), SNARE-related
protein (SNAPs), and syntaxins. These accessory proteins facilitate
the complementary binding of vSNARE and tSNARE vesicles, ensur-
ing proper PM insertion of GLUT4. In addition, three homologs (a, b,
and c) of Munc18, from the Sec1 protein family are known to be
present at the mammalian PM [8,9]. Of these, Munc18c is ubiqui-
tously expressed and has binding specificity for the tSNARE protein
lsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.febslet.2012.05.061
mailto:arend.bonen@gmail.com
http://dx.doi.org/10.1016/j.febslet.2012.05.061
http://www.FEBSLetters.org


S.S. Jain et al. / FEBS Letters 586 (2012) 2428–2435 2429
syntaxin4 [10]. In skeletal muscle, partial ablation of Munc18c in
heterozygous knockout mice (Munc18c�/+) induces insulin resis-
tance due to impaired GLUT4 translocation [11].

Munc18c may however only be involved in insulin-stimulated
GLUT4 trafficking, since GLUT4 trafficking in insulin resistant mus-
cle is impaired while in the same muscles contraction-stimulated
GLUT4 trafficking remains normal [12–14]. Conversely, in insulin
resistant muscle, sarcolemmal FAT/CD36, but not FABPpm, is
upregulated. However, insulin-, and contraction-stimulated FAT/
CD36, but not FABPpm, translocations are impaired (cf. [3]). Collec-
tively, it appears that there may be (i) different exocytosis mecha-
nisms for GLUT4 and FA transporters, and (ii) depending on the
stimulus provided, different proteins may be required for the traf-
ficking of GLUT4 and/or FA transporters to the PM. Such a system
would provide for selective regulation of GLUT4 and/or FA trans-
porter trafficking to the PM.

Our aim was to examine the effects of Munc18c on insulin-, and
contraction-stimulated glucose and FA transport. We hypothesized
that Munc18c differentially affects (a) insulin- and contraction-
stimulated glucose and FA transport and (b) the translocation of
GLUT4 and FA transporters to the PM, as well as (c) contraction-in-
duced mitochondrial FA oxidation and (d) FAT/CD36 trafficking to
mitochondria [15,16].

2. Materials and methods

2.1. Animals

Due to an embryonically lethal homozygous genotype, we used
male, 8–10 week old heterozygous Munc18c�/+ mice [11]
(22.7 ± 3.0 g) bred on site with C57/BL6 wildtype (WT) mice
(24.1 ± 3.1 g), and kept at 22 �C, 40% humidity, 12:12-h light–dark
cycle, and given chow and water ad libitum. Experiments were per-
formed on anesthetized mice (sodium pentobarbital 6 mg/100 g
body wt ip; MTC Pharmaceuticals, Cambridge, ON, Canada) using
principles of laboratory animal care (National Institutes of Health
publication No. 85-23, revised 1985; http://grants1.nih.gov/
grants/olaw/references/phspol.htm). The Munc18c�/+ genotype
was confirmed using standard DNA isolation and PCR methods (Ex-
tract-N-Amp, Sigma–Aldrich, St. Louis, MO, USA), as we have re-
ported previously [11].

2.2. Experimental treatments

Fasted (12 h) WT and Munc18c�/+ animals (N = 4–6/experi-
ment) were designated as control, or treated with (a) insulin
(Humulin, 1.0 U/kg body wt, ip, 15 min; Eli Lilly, Toronto, ON, Can-
ada), or (b) muscle contraction (sciatic nerve stimulation:
3 � 5 min, 2 min rest between stimulations, 100 Hz/3 s, 5 V, train
200 ms, pulse 10 ms) [17,18]. Homogenates, giant sarcolemmal
vesicles (GSV) and mitochondria were prepared from hindlimb
muscles [17–19]. Intraperitoneal glucose (1.0 g/kg body wt) and
insulin (1.0 U/kg body wt) tolerance tests were determined in sep-
arate animals. Tail vein glucose was determined using a glucose
meter (Ascensia Elite XL, Bayer Inc., Toronto, ON, Canada).

2.3. Giant sarcolemmal vesicles and substrate transport

GSV from hindlimb muscles were used to determine FA and glu-
cose transport and the presence of PM transport proteins, as de-
scribed previously [18,19].

2.4. Mitochondrial isolation and palmitate oxidation

After muscle contraction, hindlimb muscles were harvested for
isolation of subsarcolemmal (SS) and intermyofibrillar (IMF) mito-
chondria, for determination of FA oxidation, using standard proce-
dures [15–17]. Mitochondrial recovery is 26% [20] and they are
highly purified [21].

2.5. Western blotting

Protein levels were measured in GSV, muscle homogenate, and
mitochondria using Western blotting [17,18]. Antibodies against
Munc18c and syntaxin4 (each 1:1000) were generated in-house
[11]. Antibodies against GLUT4 (1:4000) (Millipore, Temecula,
CA), FAT/CD36, FATP1, FATP4 (each 1:500) (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA [22]), AMPK and Akt2, and phosphory-
lated AMPKa Thr172, Akt Thr308, and Akt Ser473 (each 1:1000)
(Cell Signaling (Danvers, MA, USA). FABPpm (1:30000, J. Calles-
Escandon, Wake Forest University) and MCT1 (1:3000, H. Hatta,
University of Tokyo) were gifts. Secondary antibodies, (Santa Cruz
Biotechnology), were used as follows: Munc18c, syntaxin4, GLUT4,
FABPpm and MCT1 (1:3000 anti-rabbit), FAT/CD36 (1:5000
anti-mouse), FATP1 (1:5000 anti-rabbit), FATP4 (1:5000 anti-goat),
and all total and phosphorylated Akt and AMPK (1:1000 anti-
rabbit). Blots were analyzed with the ChemiGenius2 Bioimaging
and GeneTools software (SynGene, Cambridge, UK) [17,18].
Ponceau-S staining was used to ensure protein loading, as well as
COXIV (Invitrogen, Burlington, ON; 1:30000 dilution) for
mitochondria.

2.6. Statistics

Data were analyzed using analysis of variance and Fisher’s LSD
post hoc test when appropriate. All data are reported as
mean ± sem.

3. Results

A 50% reduction in Munc18c protein (Fig. 1), along with a com-
parable reduction in mRNA (data not shown, [11,23]) occurred in
skeletal muscle of Munc18c�/+ animals. Syntaxin4 and transport
proteins (GLUT4, FAT/CD36, FABPpm, FATP1, FATP4) remained
unaltered (Fig. 1A). Basal blood glucose concentrations were com-
parable in mice (WT (6.1 mM ± 1.1; Munc18c�/+ 6.3 ± 1.0 mM).
Munc18c�/+ mice exhibited insulin resistance and glucose intoler-
ance (Fig. 1 B and C).

3.1. Knockdown of Munc18c does not affect insulin-, or contraction-
mediated signal transduction

Insulin increased the phosphorylation of Akt-Ser473 (+150%) and
Akt-Thr308 (+220%) comparably in WT and Munc18c�/+ mice
(Fig. 2A and B), as reported previously [11]. For unknown reasons,
muscle contraction did not alter Akt phosphorylation (Fig. 2) as ob-
served elsewhere [24], possibly owing to differences in the con-
tractile stimulus used (Fig. 2). Total Akt2 was comparable in WT
and Munc18c�/+ mice (Fig. 2C).

Muscle contraction, not insulin, increased AMPKa Thr172 phos-
phorylation (+400%) (Fig. 2D). Total AMPKa was comparable in WT
and Munc18c�/+ mice (Fig. 2E).

3.2. Knockdown of Munc18c reduces insulin-, but not contraction-
mediated glucose transport and GLUT4 translocation

Basal glucose transport and PM GLUT4 were comparable be-
tween WT and Munc18c�/+ mice (Fig. 3), whereas PM Munc18c
was reduced 50% (Fig. 4A). In WT mice, insulin increased glucose
transport (+133%) and PM GLUT4 (+60%) (Fig. 3), whereas in
Munc18c�/+ mice, insulin-stimulated glucose transport and GLUT4
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Fig. 1. Muscle protein content of Munc18c, syntaxin4, and glucose and FA transport proteins (A), IPITT (B), and IPGTT (C) in WT and Munc18c�/+ mice. N = 4–6, mean ± sem.
Error bars are smaller than symbols in B an C. As noted in Section 2, Ponceau staining was used to confirm equal loading of proteins. MCT1, a monocarboxylate transporter,
served as a positive control. ⁄p < 0.05, Munc18c�/+ vs WT mice.
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appearance at the PM were impaired (Fig. 3). In WT mice, but not
in Munc18c�/+ mice, PM Munc18c was slightly increased (26%) by
insulin. Syntaxin4 (Fig. 4) was not altered by insulin in either group
(Fig. 4).

Contraction-induced increases in glucose transport (+130%) and
PM GLUT4 (62%) were comparable in WT and Munc18c�/+ mice
(Fig. 3). Muscle contraction did not alter the PM Munc18c or syn-
taxin4 in either group (Fig. 4).

3.3. Knockdown of Munc18c does not affect insulin- or contraction-
mediated FA transport or FA transporters translocation

Basal FA transport and PM FA transport proteins were compara-
ble in WT and Munc18c�/+ mice (Fig. 5). In both groups, insulin
stimulated FA transport (+41% (Fig. 5A)) and FA transporters at
the PM comparably (FAT/CD36 +82%; FATP1 +40%; FABPpm
+39%; FATP4 +33%; (Fig. 5B–E)). Similar increases were also ob-
served in both groups with muscle contraction (FA transport
+40%; FAT/CD36 +84%; FATP1 +38%; FABPpm +43%; FATP4 +32%;
(Fig. 5B–E)).

3.4. Knockdown of Munc18c does not affect contraction-stimulated FA
oxidation or FAT/CD36 translocation to mitochondria

Only contraction-stimulated FA oxidation was examined in
mitochondria (SS, IMF), as insulin does not alter mitochondrial
FA oxidation directly. Neither basal nor contraction-stimulated
FA oxidation (+40%, Fig. 6A) and FAT/CD36 (+63%, Fig. 6B) differed
between WT and Munc18c�/+ mice.

4. Discussion

We examined the role of Munc18c, on contraction-, and insulin-
stimulated (i) glucose and FA transport, (ii) appearance of GLUT4
and FA transporters at the PM, and (iii) contraction-stimulated
FA oxidation and FAT/CD36 appearance at mitochondria. We show
that Munc18c is involved in insulin-stimulated, but not contrac-
tion-stimulated GLUT4 trafficking to the PM. A novel observation
is that Munc18c is not required for the trafficking of FA transport-
ers to the PM, or FAT/CD36 to mitochondria. Thus, (i) insulin-stim-
ulated, but not contraction-stimulated, GLUT4 trafficking to the PM
is Munc18c-dependent, whereas (ii) FA transporter trafficking to
the PM, induced by insulin or contraction, is Munc18c-
independent.

4.1. Insulin- and contraction-stimulated glucose uptake and PM GLUT4

Munc18c binds with syntaxin4, thereby converting syntaxin4
to an open conformational state, allowing interactions with other
VAMP and SNAP trafficking proteins [8,10]. The binding between
Munc18c and syntaxin4 is required for the docking and fusion of
GLUT4 vesicles into the PM [25]. Thus, it is likely that a 50%
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Fig. 2. Effects of insulin (INS) and muscle contraction (CT) on the phosphorylation of Akt Ser473 (A), Akt Thr308 (B), total Akt2 (C), phosphorylated AMPKa Thr172 (D), and total
AMPKa (E) in WT and Munc18c�/+ mice. N = 4–6 mean ± sem. As noted in Section 2, Ponceau staining was used to confirm equal loading of proteins. ⁄p < 0.05, insulin or
contraction stimulation in WT and Munc18c�/+ compared to basal phosphorylation.
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reduction in Munc18c protein in skeletal muscle, unlike in the
heart [26], accounted for the impaired insulin-stimulated
GLUT4 appearance at the PM, and glucose transport into muscle,
as insulin-stimulated Akt phosphorylation and syntaxin4 protein
levels were normal in the Munc18c�/+ mice, as shown previously
[11].
Contraction-induced trafficking of GLUT4 to the sarcolemma
did not require Munc18c. Apparently, only syntaxin4 is required
for muscle GLUT4 translocation [27]. The stimulus-specific traffick-
ing of GLUT4 is presumably due to the presence of separate insu-
lin-, and contraction-sensitive endosomal GLUT4 storage vesicles
[28,29].
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Fig. 3. Effects of insulin (INS) and muscle contraction (CT) on glucose transport (A) and plasma membrane (PM) GLUT4 (B) in WT and Munc18c�/+ mice. N = 4–6 independent
determinations, mean ± sem (3 mice were pooled for each independent experiment). Blots of two independent experiments are shown. MCT1 served as a positive control, as it
is present only at the sarcolemma [41]. It was not altered by the experimental treatments in WT and in Munc18c�/+ mice (data not shown). As noted in Section 2, Ponceau
staining was used to confirm equal loading of proteins. INS = Insulin; CT = Contraction. ⁄p < 0.05, stimulation with insulin or contraction vs respective basal. ⁄⁄p < 0.05,
Munc18c�/+ vs WT.
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Fig. 4. Effects of insulin (INS) and muscle contraction (CT) on plasma membrane (PM) Munc18c (A) and PM Syntaxin4 (B) in WT and Munc18c�/+ mice. N = 4–6 independent
determinations, mean ± sem (3 mice were pooled for each independent experiment). Blots of two independent experiments are shown. MCT1 served as a positive control, as it
is present only at the sarcolemma [41]. It was not altered by the experimental treatments in WT and in Munc18c�/+ mice (data not shown). As noted in Section 2, Ponceau
staining was used to confirm equal loading of proteins. INS = Insulin; CT = Contraction. ⁄p < 0.05, stimulation with insulin or contraction vs respective basal. ⁄⁄p < 0.05,
Munc18c�/+ vs WT.
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4.2. Insulin- and contraction-stimulated PM Munc18c and syntaxin4

In muscle, Munc18c was also translocated to the PM by insulin,
but not contraction. This parallels observations in insulin-stimu-
lated adipocytes [30]. It remains unknown why insulin-stimulated
translocation of Munc18c was not observed in the Munc18c�/+

mice.

4.3. Insulin- and contraction-stimulated FA uptake and PM FA
transporters

Reductions in Munc18c did not affect basal FA transport or
expression of any FA transporters Although Munc18c+/� mice were
insulin resistant and glucose intolerant, we did not observe upreg-
ulation of plasmalemmal FAT/CD36 under basal conditions, as was
previously observed in more severe models of insulin resistance
(obese Zucker rats, human obesity and type 2 diabetes (cf. [3])).
This suggests that in the Munc18c+/� model insulin resistance is
not associated with a basal upregulation of plasmalemmal FAT/
CD36.

Partial ablation of Munc18c did not affect FA transport, nor the
FA transporter translocation to the PM, in either insulin-, or con-
traction-stimulated muscle. Thus, while some components of insu-
lin- and contraction-induced GLUT4 and FA transporter
translocation to the PM appear to share similar signal transduction
pathways (cf. [3]), the insulin-stimulated trafficking of FA trans-
porters differs from GLUT4. Indirect evidence suggests that con-
traction-induced FA transporter and GLUT4 translocation to the
PM require different trafficking proteins. In insulin resistant mus-
cle, contraction-stimulated GLUT4 translocation is normal whereas
contraction-stimulated FAT/CD36 translocation is not increased
further beyond its upregulated, basal sarcolemmal levels (cf. [3]).

Whether other components of the GLUT4 trafficking machinery
are involved in directing FA transporters to the PM is unknown. In
cultured cardiac myocytes, VAMP trafficking proteins are involved
in the localization of FAT/CD36 to the PM, and distinct VAMP iso-
forms are specific for GLUT4 or FAT/CD36, and their translocation
is stimulus dependent [31]. In addition, in cardiac muscle the
Rab11 trafficking protein co-localizes in the same endosomal pools
as FAT/CD36 [32] and may regulate endocytosis/recycling of this
FA transporter in H9c2-hIR cells [33]. Thus, there is evidence sug-
gesting the involvement of trafficking proteins other than
Munc18c in the regulation of FA transporters. It is unlikely that
GLUT4 and FA transporters reside in the same intracellular pools
as shown by fractionation and immuno-isolation studies in cardiac
tissue [32], and the presence of GLUT4-, and FAT/CD36-specific
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Fig. 5. Effects of insulin (INS) and muscle contraction (CT) on FA transport (A) and PM FA transport proteins FAT/CD36 (B), FABPpm (C), FATP1 (D), FATP4 (E) in WT and
Munc18c�/+ mice. N = 4–6 independent determinations mean ± sem (3 mice were pooled for each independent experiment). Blots of two independent experiments are
shown. MCT1 served as a positive control, as it is present only at the sarcolemma [41]. It was not altered by the experimental treatments in WT and in Munc18c�/+ mice (data
not shown). As noted in Section 2, Ponceau staining was used to confirm equal loading of proteins. INS = Insulin; CT = Contraction. ⁄p < 0.05, stimulation with insulin or
contraction vs respective basal.
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VAMP isoforms in cultured cardiac myocytes [31]. The negative
correlation between PM levels of GLUT4 and FAT/CD36 in insulin
resistant muscle suggests differential metabolic regulation be-
tween these transporters [34].

We did not examine the translocation of GLUT4, and possibly FA
transporters, to the transverse tubules [35]. Preliminary studies
indicate that this is more complex than it might appear, especially
for the FA transporters (Bonen and Stefanyk, unpublished observa-
tions). The heterozygous knockout Munc18c model may also com-
plicate our conclusion that Munc18c is not involved in FA
transporter trafficking, as it is possible that less Munc18c is re-
quired for PM FA transporter translocation in comparison to GLUT4.
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Fig. 6. Effects of muscle contraction (CT) on FA oxidation (A) and FAT/CD36 protein (B) in SS and IMF mitochondria in WT and Munc18c�/+ mice. COXIV was used as a loading
control. N = 4–6 independent determinations, mean ± sem (3 mice were pooled for each independent experiment). As noted in Section 2, CT = Contraction. ⁄p < 0.05,
stimulation with contraction vs respective basal.
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4.4. Mitochondrial FA oxidation and FA transporters

FAT/CD36 has been identified on mitochondria in human
[16,20] and rodent muscle [15,36], and FAT/CD36 co-immunopre-
cipitates with CPT1 [37,38]. Muscle contraction is known to stim-
ulate FA oxidation, but insulin does not directly affect muscle FA
oxidation [39]. We confirm previous work [17,20] that contraction
increases mitochondrial FA oxidation and induces FAT/CD36 trans-
location to mitochondria. This trafficking process is Munc18c-inde-
pendent. While the possible trafficking pathways of FAT/CD36 to
the mitochondria are unknown, a novel isoform of VAMP1 has
been associated with mitochondria in human epithelial cells sug-
gesting the interesting possibility that mitochondria may also par-
ticipate in vesicular trafficking [40].
4.5. Summary

Munc18c is required for insulin-stimulated, but not contrac-
tion-mediated trafficking of GLUT4 to the PM. Munc18c is not re-
quired for FA transporter trafficking to the PM or to
mitochondria. It is possible that insulin-sensitive and/or contrac-
tion-sensitive pools of FA transporters are selectively regulated
by specific, trafficking protein isoforms. In view of the known
upregulation of plasmalemmal FAT/CD36 in insulin resistant mus-
cle (cf. [3]), identification of their trafficking proteins is important,
as these may be possible therapeutic targets.
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