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Abstract - In this paper, a photoelastic tactile transducer is 
modelled and analyzed using Finite-Element Analysis (F'EA). 
The effects of both normal and tangential forces are considered. 
Two different boundary conditions are examined for a 
transducer whose compliant protective layer has different 
mechanical properties from the photoelastic layer. 

I. INTRODUCTION 

Photoelasticity, in the context of tactile sensing, is an 
optical phenomenon that has not received wide attention in 
the literature [l-61. The few studies that have been published 
on photoelastic tactile sensors include the description [4] and 
implementation of a basic sensor [SI, as well as a theoretical 
model used to analyze it [6]. Research results presented in 
these papers clearly show that a photoelastic transducer can 
satisfy many of the tactile-sensing requirements specified by 
Harmon [7 ] .  

Photoelastic sensors have also been developed to detect 
slippage. One such sensor [8] uses a transducer similar to the 
one described in [4,S]. However, in [8], direct analysis of the 
fringes is used to detect movement of the grasped object 191. 

The photoelastic tactile transducer considered in this paper 
was developed in our laboratory as detailed earlier in [2 ,3] .  
Thus, only a brief explanation of it is provided herein. The 
transducer consists of a fully-supported two-layer beam, with 
a mirrored surface between the two layers, Fig. 1. The second, 
compliant, layer is added to protect the rear surface of the 
mirror. In our analysis, it is assumed that line-distributed 
forces, separated by an equal distance (s) from each other, are 
applied to a section of the top surface of the beam. A general 
angle aj defines the direction of the @) applied line force, Fj, 
with respect to the surface normal. The applied force at the j"' 
position (tactel), thus, has both normal, Nj , and tangential, TJ, 
components. 

The illumination of a photoelastic transducer is typically 
achieved using a polaridoscope [ 101. The output light-intensi- 
ty distribution from the polaridoscope is created by the 
birefringence induced in the photoelastic layer by forces ap- 
plied onto the transducer. The birefringence creates a phase- 
lead distribution that modulates the output light intensity [l 11. 

The phase-lead distribution, as will be shown in Section 11, 
is related to the stress distribution by the photoelasticity law. 
Because of the complexity of the structure of the transducer, 

the stress distribution must be calculated using Finite-Element 
Analysis @A). This analysis must account for boundary 
conditions (BCs) applied to the transducer which influence 
the stress distribution, and consequently, the phase-lead 
distribution. 

11. MODEL OF THE TRANSDUCER 

When forces are applied onto a photoelastic transducer, 
stresses are induced in it. The analytical calculation of the 
stresses is nearly impossible due to the complexity of BCs 
associated with the transducer and the different mechanical 
properties of the compliant protective and photoelastic 
transducer layers. 

FEA has been widely used in the literature to estimate 
stresses for such complex problems. In the particular case of 
tactile sensing, FEA has been utilized in several recent works 
aimed at developing improved models for the increasingly 
complex transducer designs 1112-161. 

The first step in FEA is the definition of an appropriate 
mesh for the object (transducer) under stress. The number of 
elements used in the mesh directly affects the accuracy of the 
results. However, the number of elements may be restricted 
by the limitation of the FEA software (ANSYS in our case). 

Fig. 1. Two-layer photoelastic transducer. 
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For the transducer considered in this paper, a large number 
of nodes is necessary along the x-axis. Thus, a compromise in 
choosing the node distribution must be reached for modeling 
the transducer. Because of the symmetry of the forces applied 
to the transducer along the y-axis, it is assumed that the stress 
distribution is constant along the y-axis, and a 2-D analysis is 
used in the x-z plane of the transducer. Plane-stress BCs are 
assumed for the FEA [17]. For the example presented in this 
paper, the number of elements used in the mesh was 5,025. 
The number of nodes along the x-axis, M, and the z-axis, L 
are 201 and 25, respectively. Fig. 2 shows the 2-D mesh 
configuration selected for the analysis. The central part of the 
mesh has more elements than the outer parts in order to 
improve the accuracy of the stress calculations in the central 
region where the forces are applied. E, and VI,  and E2 and v2 
denote the modulii of elasticity and Poison's coefficients of 
the compliant and the photoelastic layers, respectively. 

The values of the stresses are directly related to the BCs of 
the transducer. Two different BCs were considered: The first 
one, shown in Fig. 3 (a), assumes that only the bottom part of 
the transducer is fully supported and the lateral borders are 
free (Case I). The second one, shown in Fig. 3 (b), assumes 
that the bottom part of the transducer is fully supported and 
that the lateral borders can move only in the vertical direction 
(Case 2). These BCs represent two possible practical cases in 
the design of a photoelastic transducer, and, as will be discu- 
ssed in Section IV, influence the dynamic range of the sensor. 

The calculation of the induced phase-lead distribution can 
be carried out using the photoelasticity law that links the 
stress distribution to the phase-lead distribution [ 101. In our 
case, the phase-lead distribution p(x )  can be calculated 
following [6] as: 

where K, is a constant and ox is the shear stress along the x-axis, 
when a set of arbitrary forces (Nj  and 7J is applied. The 
constant K, is given by: 

where h is the wavelength of the light and K, is the 
photoelastic strain coefficient. 

c/2 1 c/2 

k 
Fig. 2: Finite-element mesh representation for the transducer. 
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Fig. 3. Boundary conditions. 

Since the stresses are calculated at each node of the mesh 
by FEA, (1) is re-written as: 

(3) 
r=i 

where pi is the phase-lead at xi, oil is the shear stress at the 
node (Q),  and Az2 is the distance between two consecutive 
nodes along the z-axis in the photoelastic layer. 

The specific parameters and dimensions of the transducer 
given in Tables I and I1 were used in the numerical examples 
below. Nt denotes the total number of tactels at which line 
forces are applied. 
Case 1. For this case, the resulting stress profiles at three 
different depths are shown in Fig. 4 for a set of forces of 1 N 
applied at an angle a=lOo at each tactel. Due to the particular 
BC, the stress values at the borders of the transducer must be 
zero. As can be observed in Fig. 4, the photoelastic layer acts 
as low-pass filter: The stress distribution is smoothed as the 
depth of the photoelastic layer increases [ 121. 
Case 2. In Fig. 5, the stress profiles are shown for the same 
set of forces and at the same depths used in Case 1. Here, 
however, due to the specific BC, the stress values at the 
borders do not necessarily have to be zero. 

TABLEI. 
D~MENSIONS OF THE M S D U m  

a b C S t 

0.5" 3 m m  25" Imm 2mm 

TABLE II. 
OPTC-~CALPROPERTIES OFTHE TRANSDUCER 

1 1  MPa 1lOMPa 0.49 0.42 632.8 nm 0.05 I 1  

El E2 VI  v2 h Ks Nt 
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The corresponding phase-lead distributions for Cases 1 and 
2 can be calculated using (3). As can be observed from Fig. 6, 
the value of the phase-lead at GO, is zero for Case 1' and 
non-zero for Case 2. Thus, one can conclude that the BCs of 
the transducer directly affect the BCs of the phase-lead 
distribution. On the other hand, it is also interesting to note 
that for the example under analysis, the BCs do not affect the 
phase-lead distribution at some distance from the boundary. A 
potential reason for this phenomenon is that, for our example, 
the transducer is long enough to reduce the effect of the BCs 
in the central part. Presumably, if the, transducer had been 
shortened, the BCs would affect the phase-lead distribution 
along its full length. 

111. GENERAL CHARACTERIZATION OF THE TRANSDUCER 

Running the FEA program every time that a new force 
profile is applied to the transducer would be extremely time- 
consuming. Since the opto-mechanical system is seen to be 
linear, the principle of superposition applies. (In fact, this is 
what underlies the FEA technique used.) 

Applying the principle of superposition more globally, the 
stresses oil can be seen as the individual contributions of the 
stresses generated by the sets of normal and shear forces 
applied to the transducer. Equation (3) can be then re-written 
as : 

L L 

p i = 2 K ~ N o i l A z 2 + 2 K ~ T o i l A z 2 ,  (4) 
k1 1=1 

where Noil and Toil are, respectively, the stresses due to the 
normal and tangential forces applied to the transducer. 

Since the system is linear with multiple inputs, the stresses 
oil and 'oil can be considered as the superposition of the in- 

dividual stresses generated by each of the normal and tangen- 
tial components of the input forces. Those individual stresses 
are denoted roil and 50 il , where j identifies the tactel that is 
producing them. Based on that, (4) can be re-written as: 

L NI L NI 

N 

pi  = 2 K x ~ ~ o l r A z 2  + 2 K x ~ ~ o i 1 A z 2  ( 5 )  

The individual impulse response of each tactel can be 
found by applying known normal (WN) and tangential (WT) 
loads at each tactel and calculating the corresponding shear 
stresses at each node. Let those stresses be denoted 
as ;l and To :l . Equation (5) can be then re-written as: 

1=1 j=1 1=1 j=1 

J 

Re-arranging (6) results in: 

From Fig. 6, it can be observed that, in reality, the phase-lead 
distribution for Case 1 at x=O is not exactly zero due to small 
numerical errors in the stress calculation. 

x lo5 
1 I 

I 
-10 -5 0 5 10 

x (") 

Shear-stress distribution at depths of 0.5, 1.5 and 2.5 
mm for Case 1. 

Fig. 4. 
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1 
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x (mm) 

Shear stress distribution at depths of 0.5, 1.5 and 2.5 
mm for Case 2. 

Fig. 5. 

-1 0 -5 0 5 10 

Fig. 6. Phase-lead distribution when a load of 1 N is applied 
to each of the 11 tactels at angle of 10". 
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The expressions in parentheses indicate the corresponding 
phase leads at the xi coordinate with respect to the known 
loads WN and WT applied to the j" tactel. Such phase leads can 
be notated as N ~ i j  and T ~ i j ,  respectively. Then, (7) is reduced 
to: 

NI NI 
pi =-!-c "vijNj +'c T~ CJ .. T .  J '  (8) 

j=l 
WT 

wN j=1 

The equivalent matrix form of (8) is given by: 

P=$Y,N++Y~T, (9 * 4 
where 

P= [ ?] ,  N=[?  ],T=[:,], (9.b) 
PM " I  

and 
N N T T W11--. W I N ,  W11". W I N ,  

YN = [ N f N f ] .;[ T f T f 1. (9.c) 
W MI.* '  W MN, MI"' W MN, 

Fig. 7, shows the phase-lead distributions 

Assuming WN=WT=W, (8) can be re-written as: 

and Tu/lfor 
i=1,2, .  . .M considering that WNzO.4 N and WT=0.2 N. 

P = + Y F ,  (lO.a) 

Y=[V, r w,] fj. (10.b) 

Equation (10) completely characterizes the transducer. The 
model matrix Y takes into account the parameters and 
dimensions of the transducer, as well as, the BCs. Once it is 
evaluated, FEA programs are no longer needed for the 
forward analysis of that particular transducer. Equation (lo) 
also provides the means for solving the inverse-problem of 
the tactile sensor: If P and Y are known, F, can be calculated 
by inverting (1O.a). 

where, 

IV. INFLUENCE OF THE BOUNDARY CONDITIONS ON THE 
DYNAMIC RANGE 

When a polaridoscope is used to illuminate the transducer, 
the phase-lead distribution cannot be measured directly [lo]. 
Instead, the light-intensity distribution is measured. For the 
ideal (noise-free) case, the normalized light-intensity 
distribution is a function of the phase-lead distribution [ 101: 

-0.4 051 \ I ?\ //' 
V I  \L 

-10 -5 0 5 10 
-0.5 [ 

Fig. 7. Phase-lead distribution "yril and Tvi, i=1,2 ... M when 
WN=0.4 N and WT=0.2 N and the transducer is under the BCs 

specified for Case 1. 

Recovering the phase-lead distribution from (1 l) ,  requires 
the use of an algorithm previously reported, since the phase- 
lead distribution might not be limited to the interval [-n 01 
over the length of the transducer [l]. Fig. 6 is an example of 
this possible case. Fig. 8 shows the corresponding normalized 
light-intensity distribution of the phase-lead distribution of 
Case 1. 

The following algorithm is an analytical method for the 
recovery of a general phase-lead distribution from the 
normalized light-intensity distribution under ideal conditions. 
A detailed explanation of this algorithm has been previously 
reported in [ 11 

The first step in the algorithm is the classification of the 
critical points' of ~ ( x )  as follows: 

Fig. 8. Normalized light-intensity distribution for Case 1. 

Critical points of I(x) are the those points where dI/dx=O. 
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(a) Class 1: critical points of I(x), where I(x)=l, and the 
first non-negative derivative is of the form d2k+'I/dXk+z 
for some integer k 2 1. 

(b) Class 2: critical points of I(x), where I(x)=O, and the 
first non-negative derivative is of the form d2k+'I/dy2k+I 
for some integer k 2 1. 

(c) Class 3: critical points of Z(x), which are local extrema 
but do not satisfy conditions (a) or (b). 

The second step in the algorithm deals with the recovery of 
the phase-lead distribution. The phase-!ead distribution can be 
reconstructed using the following formula: 

p(x)=-2nm-(-1)m+f12arcsin~ , (12) 

where m + m + ( - l ) k  
The algorithm starts with m=O, n=O, and k=O. The phase- 

lead distribution is recovered point-by-point by increasing x 
from -112 to 112 (or vice versa). When a Class 3 critical point 
is encountered, k is increased by one; when a Class 2 critical 
point is encountered, n is increased by one; and, when a Class 1 
critical point is encountered, nz is increased or decreased by 
one depending on the value of k. 

Equation (12) assumes that the phase-lead distribution at 
the borders (x=-1/2 or x=W2) is in the interval U=[-?t 01. This 
condition is a consequence of the initial values of m, n, and k. 
If the value of the phase-lead at the borders is not in the 
interval U, a new set of initial indices must be provided. 
Unfortunately, the initial values of the indices cannot be 
provided if the phase-lead distribution is not known a priori. 
For this reason it is imperative to guarantee that the value of 
the phase-lead at the borders is restricted to the interval U. 

If the transducer has the BCs of Case 1, the above 
condition is guaranteed since the phase-lead values are zero at 
x=-1/2 and x=1/2, independently of the force applied to the 
transducer. But, if the transducer has the BCs of Case 2, the 
above condition is not guaranteed for the complete range of 
applied forces. Thus, the BCs for Case 1, provide a transducer 
with a larger dynamic range. It should be noted that this 
particular characteristic is not shared by other technologies 
(resistive, capacitive, for example), where the BCs do not 
substantially influence the dynamic range of the sensor. 

V. INVERSE PROBLEM 

In Sections I1 and 111, forward analysis of the sensor was 
presented. In Section IV, an algorithm was presented for the 
solution of the inverse problem under ideal (noise-free) 
conditions. In reality, however, the light-intensity distribution 
i s  subject to noise from electronic sources, A/D conversion, 
and spatial sampling when a digital line-scan camera is used 
in the detection process. In this case, the light-intensity 
distribution is given by: 

( x i  )+ I ,]  (13) 

where no is the total random noise introduced into the 
measurement; I, is the minimum average normalized voltage 
applied to the A/D converter, such that I,  + min(no) 2 0; and A 
is the maximum allowed dynamic range of the A/D converter, 
such that A + Io + max(n,) I 2' - 1, where B is the number of 
bits in the A/D converter. The function round(.) returns the 
closest integer to the real number (.) and simulates the effect 
of the A/D converter. 

Recovering the phase-lead distribution from (1 3)  
constitutes an ill-posed problem, since several phase-lead 
distribution can be recovered [3]. This occurs because the 
classification of the critical points of the light-intensity 
distribution becomes ambiguous. The added noise in the 
light-intensity distribution prevents the accurate calculation of 
high-order derivatives; thus, the critical points cannot be 
classified using the algorithm outlined in Section IV because 
of the noise conditions. 

In [2,3], an algorithm that solves the noise-induced ill- 
posed inverse problem was reported. The algorithm 
accurately reconstructs the phase-lead distribution, and also 
recovers the applied force profile. Here, we limit our dis- 
cussion to applying that algorithm to the example of Case 1. 

In Fig. 9, the corresponding "noisy" light-intensity 
distribution for Case 1 is shown for the case in which B=X 
bits, 10=5, A=245, and that a linear array with 2,048 elements 
is used as a detector for measuring the light-intensity 
distribution. The noise no is assumed to be random and 
limited between -5 and 5 grey levels. 

Using the algorithm in [3] ,  the phase-lead distribution, P,, 
shown in Fig. 10, is reconstructed. As can be observed this 
phase-lead distribution is slightly different from the original 
phase-lead distribution shown in Fig. 6 and reproduced in Fig. 
10 for comparison purposes. Once the phase-lead distribution 
is recovered, the force profile can be obtained by solving the 
following equation for F, [3]: 

P, =&YF,. , (14 1 

x (") 

Noisy light-intensity distribution in grey levels. Fig 9. 
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I ,  I 

* (”) 
Fig. 10. Phase-lead distributions P and P, for Case 1. 

where Y is the model matrix obtained under noisy conditions 
[3] and F, is the recovered force profile. F, is obtained from 
(14) using a least-squares technique. The recovered force 
profile for our example is then given by: 

F, = (0.976L10.6’, 1.02L9.7’, 1.05L9.8’, 0.97L10.4”, 

0.963L9.5’, 0.98L10.5’, 0.973L10.4’, 0.967L10.3’, 

0.953L10.2’, 0.943L10.7”, 1.056L9.7’ ) 

When one compares this result with the actual applied 
force profile, one sees that the maximum error is less than 6% 
in the force magnitude and 7% in the angle of application for 
a noise of +5 grey levels in the light-intensity distribution. 

VI. CONCLUSIONS 

In this paper, the forward analysis of a photoelastic tactile 
sensor is presented. The transducer of the sensor is modelled 
using FEA with a 2-D mesh representation. Two boundary 
conditions were considered. It was shown that the dynamic 
range of the sensor is directly influenced by the BCs applied. 
Also, it was shown that the transducer can be completely 
characterized by a phase-lead matrix Y. Finally, an algorithm, 
previously reported in [2,3], was successfully applied to solve 
the inverse problem under noisy conditions, simulating the 
actual measurement situation. 
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