41 research outputs found
Exoplanet phase curves: observations and theory
Phase curves are the best technique to probe the three dimensional structure
of exoplanets' atmospheres. In this chapter we first review current exoplanets
phase curve observations and the particular challenges they face. We then
describe the different physical mechanisms shaping the atmospheric phase curves
of highly irradiated tidally locked exoplanets. Finally, we discuss the
potential for future missions to further advance our understanding of these new
worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been
  updated with new values for WASP-103b and WASP-18b. Contains a table
  sumarizing phase curve observation
Mapping Exoplanets
The varied surfaces and atmospheres of planets make them interesting places
to live, explore, and study from afar. Unfortunately, the great distance to
exoplanets makes it impossible to resolve their disk with current or near-term
technology. It is still possible, however, to deduce spatial inhomogeneities in
exoplanets provided that different regions are visible at different
times---this can be due to rotation, orbital motion, and occultations by a
star, planet, or moon. Astronomers have so far constructed maps of thermal
emission and albedo for short period giant planets. These maps constrain
atmospheric dynamics and cloud patterns in exotic atmospheres. In the future,
exo-cartography could yield surface maps of terrestrial planets, hinting at the
geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17
  pages, including 6 figures and 4 pages of reference
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
  and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
  Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
  Reference Work
Development of the SPECULOOS exoplanet search project
SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to
perform a transit search on the nearest (pc) ultracool (K) dwarf
stars. The project's main motivation is to discover potentially habitable
planets well-suited for detailed atmospheric characterisation with upcoming
giant telescopes, like the James Webb Space Telescope (JWST) and European Large
Telescope (ELT). The project is based on a network of 1m robotic telescopes,
namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro
Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in
Tenerife, and the SAINT-Ex telescope in San Pedro M\'artir, Mexico. The
prototype survey of the SPECULOOS project on the 60~cm TRAPPIST telescope
(Chile) discovered the TRAPPIST-1 system, composed of seven temperate
Earth-sized planets orbiting a nearby (12~pc) Jupiter-sized star. In this
paper, we review the current status of SPECULOOS, its first results, the plans
for its development, and its connection to the Transiting Exoplanet Survey
Satellite (TESS) and JWST
Refining the transit-timing and photometric analysis of TRAPPIST-1: Masses, Radii, densities, dynamics, and ephemerides
We have collected transit times for the TRAPPIST-1 system with the Spitzer
Space Telescope over four years. We add to these ground-based, HST and K2
transit time measurements, and revisit an N-body dynamical analysis of the
seven-planet system using our complete set of times from which we refine the
mass ratios of the planets to the star. We next carry out a photodynamical
analysis of the Spitzer light curves to derive the density of the host star and
the planet densities. We find that all seven planets' densities may be
described with a single rocky mass-radius relation which is depleted in iron
relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise
Earth-like in composition. Alternatively, the planets may have an Earth-like
composition, but enhanced in light elements, such as a surface water layer or a
core-free structure with oxidized iron in the mantle. We measure planet masses
to a precision of 3-5%, equivalent to a radial-velocity (RV) precision of 2.5
cm/sec, or two orders of magnitude more precise than current RV capabilities.
We find the eccentricities of the planets are very small; the orbits are
extremely coplanar; and the system is stable on 10 Myr timescales. We find
evidence of infrequent timing outliers which we cannot explain with an eighth
planet; we instead account for the outliers using a robust likelihood function.
We forecast JWST timing observations, and speculate on possible implications of
the planet densities for the formation, migration and evolution of the planet
system
A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266
We report the discovery and characterisation of a super-Earth and a
sub-Neptune transiting the bright (), quiet, and nearby (37 pc) M3V
dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four
sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX
telescope located in San Pedro M\'artir (Mexico). We also include additional
ground-based follow-up photometry as well as high-resolution spectroscopy and
high-angular imaging observations. The inner, larger planet has a radius of
 R and an orbital period of 10.9 days. The
outer, smaller planet has a radius of  R on
an 18.8-day orbit. The data are found to be consistent with circular, co-planar
and stable orbits that are weakly influenced by the 2:1 mean motion resonance.
Our TTV analysis of the combined dataset enables model-independent constraints
on the masses and eccentricities of the planets. We find planetary masses of
 =   (
 at 2-) for TOI-1266 b and 
 (  at 2-) for TOI-1266
c. We find small but non-zero orbital eccentricities of 
( at 2-) for TOI-1266 b and  ( at
2-) for TOI-1266 c. The equilibrium temperatures of both planets are of
 K and  K, respectively, assuming a null Bond albedo and
uniform heat redistribution from the day-side to the night-side hemisphere. The
host brightness and negligible activity combined with the planetary system
architecture and favourable planet-to-star radii ratios makes TOI-1266 an
exquisite system for a detailed characterisation
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models
TOI-1055 b: Neptunian planet characterised with HARPS, TESS, and CHEOPS
CONTEXT: TOI-1055 is a Sun-like star known to host a transiting Neptune-sized planet on a 17.5-day orbit (TOI-1055 b). Radial velocity (RV) analyses carried out by two independent groups using nearly the same set of HARPS spectra have provided measurements of planetary masses that differ by ∼2σ. AIMS: Our aim in this work is to solve the inconsistency in the published planetary masses by significantly extending the set of HARPS RV measurements and employing a new analysis tool that is able to account and correct for stellar activity. Our further aim was to improve the precision on measurements of the planetary radius by observing two transits of the planet with the CHEOPS space telescope. METHODS: We fit a skew normal function to each cross correlation function extracted from the HARPS spectra to obtain RV measurements and hyperparameters to be used for the detrending. We evaluated the correlation changes of the hyperparameters along the RV time series using the breakpoint technique. We performed a joint photometric and RV analysis using a Markov chain Monte Carlo scheme to simultaneously detrend the light curves and the RV time series. RESULTS: We firmly detected the Keplerian signal of TOI-1055 b, deriving a planetary mass of Mb = 20.4−2.5+2.6 M⊕ (∼12%). This value is in agreement with one of the two estimates in the literature, but it is significantly more precise. Thanks to the TESS transit light curves combined with exquisite CHEOPS photometry, we also derived a planetary radius of Rb = 3.490−0.064+0.070 R⊕ (∼1.9%). Our mass and radius measurements imply a mean density of ρb = 2.65−0.35+0.37 g cm−3 (∼14%). We further inferred the planetary structure and found that TOI-1055 b is very likely to host a substantial gas envelope with a mass of 0.41−0.20+0.34 M⊕ and a thickness of 1.05−0.29+0.30 R⊕. CONCLUSIONS: Our RV extraction combined with the breakpoint technique has played a key role in the optimal removal of stellar activity from the HARPS time series, enabling us to solve the tension in the planetary mass values published so far for TOI-1055 b
A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres
