40 research outputs found

    Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p

    Single-layer graphene modulates neuronal communication and augments membrane ion currents

    Get PDF
    The use of graphenebased materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that singlelayer graphene increases neuronal firing by altering membraneassociated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene\u2013ion interactions that are maximized when singlelayer graphene is deposited on electrically insulating substrates are crucial to these effects

    A case report of Traumatic Asphyxia

    No full text
    Traumatic asphyxia is a condition presenting with cervicofacial cyanosis and edema, subconjunctival hemorrhage, and petechial hemorrhages of the face, neck, and upper chest that occurs due to a compressive force to the thoracoabdominal region.In this case report a 52 years old lady who was brought to the mortuary because of death due to traumatic asphyxia as a result of being stampeded by her own cows upon her chest was discussed. Congestion on both the conjunctiva, cyanosis on chin and adjacent upper left side of neck found with a well demarcated area observed between the cyanosed area over face and the normal area of neck. Hematoma was present in the chin and the adjacent neck region.Apart from quickly eliminating organ pathologies and initiation of supportive therapy in a case of traumatic asphyxia, possibility of formation of hematoma in neck after few hours of getting injured should also be considered, as this type of hematoma may contribute to the cause of death.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12777 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 51-55</p

    Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala

    No full text
    Fear conditioning is a paradigm that has been used as a model for emotional learning in animals'. The cellular correlate of fear conditioning is thought to be associative N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity within the amygdala(1-3). Here we show that glutamatergic synaptic transmission to inhibitory interneurons in the basolateral amygdala is mediated solely by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In contrast to AMPA receptors at inputs to pyramidal neurons, these receptors have an inwardly rectifying current-voltage relationship, indicative of a high permeability to calcium(4 5), Tetanic stimulation of inputs to interneurons caused an immediate and sustained increase in the efficacy of these synapses. This potentiation required a rise in postsynaptic calcium, but was independent of NMDA receptor activation. The potentiation of excitatory inputs to interneurons was reflected as an increase in the amplitude of the GABAA-mediated inhibitory synaptic current in pyramidal neurons. These results demonstrate that excitatory synapses onto interneurons within a fear conditioning circuit show NMDA-receptor independent long-term potentiation. This plasticity might underlie the increased synchronization of activity between neurons in the basolateral amygdala after fear conditioning(6)
    corecore