153 research outputs found

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression

    Circulating MicroRNAs Are Not Eliminated by Hemodialysis

    Get PDF
    BACKGROUND: Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. METHODS: We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m(2), Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m(2), MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m(2), MWCO: 40 kDa, n = 6). RESULTS: Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. CONCLUSIONS: In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury

    Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation

    Get PDF
    Background. We previously reported the in vitro spontaneous transformation of human mesenchymal stem cells (MSC) generating a population with tumorigenic potential, that we termed transformed mesenchymal cells (TMC). Methodology/Principal Findings. Here we have characterized the molecular changes associated with TMC generation. Using microarrays techniques we identified a set of altered pathways and a greater number of downregulated than upregulated genes during MSC transformation, in part due to the expression of many untranslated RNAs in MSC. Microarray results were validated by qRT-PCR and protein detection. Conclusions/Significance. In our model, the transformation process takes place through two sequential steps; first MSC bypass senescence by upregulating c-myc and repressing p16 levels. The cells then bypass cell crisis with acquisition of telomerase activity, Ink4a/Arf locus deletion and Rb hyperphosphorylation. Other transformation-associated changes include modulation of mitochondrial metabolism, DNA damage-repair proteins and cell cycle regulators. In this work we have characterized the molecular mechanisms implicated in TMC generation and we propose a two-stage model by which a human MSC becomes a tumor cell

    High-Definition DNA Methylation Profiles from Breast and Ovarian Carcinoma Cell Lines with Differing Doxorubicin Resistance

    Get PDF
    Acquired drug resistance represents a frequent obstacle which hampers efficient chemotherapy of cancers. The contribution of aberrant DNA methylation to the development of drug resistant tumor cells has gained increasing attention over the past decades. Hence, the objective of the presented study was to characterize DNA methylation changes which arise from treatment of tumor cells with the chemotherapeutic drug doxorubicin. DNA methylation levels from CpG islands (CGIs) linked to twenty-eight genes, whose expression levels had previously been shown to contribute to resistance against DNA double strand break inducing drugs or tumor progression in different cancer types were analyzed. High-definition DNA methylation profiles which consisted of methylation levels from 800 CpG sites mapping to CGIs around the transcription start sites of the selected genes were determined. In order to investigate the influence of CGI methylation on the expression of associated genes, their mRNA levels were investigated via qRT-PCR. It was shown that the employed method is suitable for providing highly accurate methylation profiles, comparable to those obtained via clone sequencing, the gold standard for high-definition DNA methylation studies. In breast carcinoma cells with acquired resistance against the double strand break inducing drug doxorubicin, changes in methylation of specific cytosines from CGIs linked to thirteen genes were detected. Moreover, similarities between methylation profiles obtained from breast and ovarian carcinoma cell lines with acquired doxorubicin resistance were found. The expression levels of a subset of analyzed genes were shown to be linked to the methylation levels of the analyzed CGIs. Our results provide detailed DNA methylation information from two separate model systems for acquired doxorubicin resistance and suggest the occurrence of similar methylation changes in both systems upon exposure to the drug

    Glycomics Analysis of Mammalian Heparan Sulfates Modified by the Human Extracellular Sulfatase HSulf2

    Get PDF
    The Sulfs are a family of endosulfatases that selectively modify the 6O-sulfation state of cell-surface heparan sulfate (HS) molecules. Sulfs serve as modulators of cell-signaling events because the changes they induce alter the cell surface co-receptor functions of HS chains. A variety of studies have been aimed at understanding how Sulfs modify HS structure, and many of these studies utilize Sulf knockout cell lines as the source for the HS used in the experiments. However, genetic manipulation of Sulfs has been shown to alter the expression levels of HS biosynthetic enzymes, and in these cases an assessment of the fine structural changes induced solely by Sulf enzymatic activity is not possible. Therefore, the present work aims to extend the understanding of substrate specificities of HSulf2 using in vitro experiments to compare HSulf2 activities on HS from different organ tissues.To further the understanding of Sulf enzymatic activity, we conducted in vitro experiments where a variety of mammalian HS substrates were modified by recombinant human Sulf2 (HSulf2). Subsequent to treatment with HSulf2, the HS samples were exhaustively depolymerized and analyzed using size-exclusion liquid chromatography-mass spectrometry (SEC-LC/MS). We found that HSulf2 activity was highly dependent on the structural features of the HS substrate. Additionally, we characterized, for the first time, the activity of HSulf2 on the non-reducing end (NRE) of HS chains. The results indicate that the action pattern of HSulf2 at the NRE is different compared to internally within the HS chain.The results of the present study indicate that the activity of Sulfs is dependent on the unique structural features of the HS populations that they edit. The activity of HSulf2 at HS NREs implicates the Sulfs as key regulators of this region of the chains, and concomitantly, the protein-binding events that occur there

    Characterisation of the anti-apoptotic function of survivin-ΔEx3 during TNFα−mediated cell death

    Get PDF
    Survivin is an oncogenic protein involved in cell division and acts as an anti-apoptotic factor. It is highly expressed in most cancers and is associated with chemotherapy resistance, increased tumour recurrence, and shorter patient survival. This makes anti-survivin therapy an attractive cancer treatment strategy. These functions are mediated by several survivin spliced variants, whose expression may correlate with cancer progression. One of the spliced variants, survivin-ΔEx3, is known to inhibit apoptosis, through undefined mechanisms. Here, we characterised these mechanisms upon TNFα−mediated apoptosis, and showed that survivin-ΔEx3 acts as an adaptor, allowing the formation of a complex between Bcl-2 and activated caspase-3. The Bcl-2/survivin-ΔEx3 complex, but not survivin-ΔEx3 itself, inhibits the activity of caspase-3. Bcl-2 is therefore linked to the postmitochondrial apoptotic machinery by survivin-ΔEx3. Thus, survivin-ΔEx3 plays a key role in the inhibition of caspase-3 activity, and in the control of the mitochondrial checkpoint of apoptosis. This study suggests that targeting survivin-ΔEx3, rather than survivin alone, could be relevant for treating human cancers

    Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells

    Get PDF
    The platinum compound oxaliplatin has been shown to be an effective chemotherapeutic agent for the treatment of colorectal cancer. In this study, we investigate the molecular mechanisms of action of oxaliplatin to identify means of predicting response to this agent. Exposure of colon cancer cells to oxaliplatin resulted in G2/M arrest and apoptosis. Immunofluorescent staining demonstrated that the apoptotic cascade initiated by oxaliplatin is characterised by translocation of Bax to the mitochondria and cytochrome c release into the cytosol. Oxaliplatin treatment resulted in caspase 3 activation and oxaliplatin-induced apoptosis was abrogated by inhibition of caspase activity with z-VAD-fmk, but was independent of Fas/FasL association. Targeted inactivation of Bax or p53 in HCT116 cells resulted in significantly increased resistance to oxaliplatin. However, the mutational status of p53 was unable to predict response to oxaliplatin in a panel of 30 different colorectal cancer cell lines. In contrast, the expression profile of these 30 cell lines, assessed using a 9216-sequence cDNA microarray, successfully predicted the apoptotic response to oxaliplatin. A leave-one-out cross-validation approach was used to demonstrate a significant correlation between experimentally observed and expression profile predicted apoptosis in response to clinically achievable doses of oxaliplatin (R=0.53; P=0.002). In addition, these microarray experiments identified several genes involved in control of apoptosis and DNA damage repair that were significantly correlated with response to oxaliplatin

    DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.</p> <p>Methods</p> <p>HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity<sup>® </sup>Pathway Analysis.</p> <p>Results</p> <p>Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.</p> <p>Conclusion</p> <p>This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.</p
    • …
    corecore