24 research outputs found
Infrastructure-based Multi-Camera Calibration using Radial Projections
Multi-camera systems are an important sensor platform for intelligent systems
such as self-driving cars. Pattern-based calibration techniques can be used to
calibrate the intrinsics of the cameras individually. However, extrinsic
calibration of systems with little to no visual overlap between the cameras is
a challenge. Given the camera intrinsics, infrastucture-based calibration
techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM
or Structure-from-Motion. In this paper, we propose to fully calibrate a
multi-camera system from scratch using an infrastructure-based approach.
Assuming that the distortion is mainly radial, we introduce a two-stage
approach. We first estimate the camera-rig extrinsics up to a single unknown
translation component per camera. Next, we solve for both the intrinsic
parameters and the missing translation components. Extensive experiments on
multiple indoor and outdoor scenes with multiple multi-camera systems show that
our calibration method achieves high accuracy and robustness. In particular,
our approach is more robust than the naive approach of first estimating
intrinsic parameters and pose per camera before refining the extrinsic
parameters of the system. The implementation is available at
https://github.com/youkely/InfrasCal.Comment: ECCV 202
Novel Block Diagonalization for Reducing Features and Computations in Medical Diagnosis
Author's accepted manuscript.Available from 28/11/2021.acceptedVersio
Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization
Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images
Data-analysis strategies for image-based cell profiling
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe
Understanding the empirical hardness of random optimisation problems
We look at the empirical complexity of the maximum clique problem, the graph colouring problem, and the maximum satisfiability problem, in randomly generated instances. Although each is NP-hard, we encounter exponential behaviour only with certain choices of instance generation parameters. To explain this, we link the difficulty of optimisation to the difficulty of a small number of decision problems, which are already better-understood through phenomena like phase transitions with associated complexity peaks. However, our results show that individual decision problems can interact in very different ways, leading to different behaviour for each optimisation problem. Finally, we uncover a conflict between anytime and overall behaviour in algorithm design, and discuss the implications for the design of experiments and of search strategies such as variable- and value-ordering heuristics