837 research outputs found

    In vitro biosynthesis, core glycosylation and membrane integration of opsin

    Full text link

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection

    Get PDF
    BACKGROUND: Cardiac allograft rejection remains a significant clinical problem in the early phase after heart transplantation and requires frequent surveillance with endomyocardial biopsy. However, this is an invasive procedure, which is unpleasant for the patient and carries a certain risk. Therefore, a sensitive non-invasive biomarker of acute rejection would be desirable. METHODS: Endomyocardial tissue samples and serum were obtained in connection with clinical biopsies from twenty consecutive heart transplant patients followed for six months. A rejection episode was observed in 14 patients (11 men and 3 women) and biopsies obtained before, during and after the episode were identified. Endomyocardial RNA, from three patients, matching these three points in time were analysed with DNA microarray. Genes showing up-regulation during rejection followed by normalization after the rejection episode were evaluated further with real-time RT-PCR. Finally, ELISA was performed to investigate whether change in gene-regulation during graft rejection was reflected in altered concentrations of the encoded protein in serum. RESULTS: Three potential cardiac allograft rejection biomarker genes, chemokine (C-X-C motif) ligand 9 (CXCL9), chemokine (C-X-C motif) ligand 10 (CXCL10) and Natriuretic peptide precursor A (NPPA), from the DNA microarray analysis were selected for further evaluation. CXCL9 was significantly upregulated during rejection (p < 0.05) and CXCL10 displayed a similar pattern without reaching statistical significance. Serum levels of CXCL9 and CXCL10 were measured by ELISA in samples from 10 patients before, during and after cardiac rejection. There were no changes in CXCL9 and CXCL10 serum concentrations during cardiac rejection. Both chemokines displayed large individual variations in the selected samples, but the serum levels between the two chemokines correlated (p < 0.001). CONCLUSION: We conclude, that despite a distinct up-regulation of CXCL9 mRNA in human hearts during cardiac allograft rejection, this was not reflected in the serum levels of the encoded protein. Thus, in contrast to previous suggestions, serum CXCL9 does not appear to be a promising serum biomarker for cardiac allograft rejection

    Organisational justice:new insights from behavioural ethics

    Get PDF
    Both organizational justice and behavioural ethics are concerned with questions of 'right and wrong' in the context of work organizations. Until recently they have developed largely independently of each other, choosing to focus on subtly different concerns, constructs and research questions. The last few years have, however, witnessed a significant growth in theoretical and empirical research integrating these closely related academic specialities. We review the organizational justice literature, illustrating the impact of behavioural ethics research on important fairness questions. We argue that organizational justice research is focused on four reoccurring issues: (i) why justice at work matters to individuals; (ii) how justice judgements are formed; (iii) the consequences of injustice; and (iv) the factors antecedent to justice perceptions. Current and future justice research has begun and will continue borrowing from the behavioural ethics literature in answering these questions

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie
    • …
    corecore