25,163 research outputs found
Non-invasive brain stimulation techniques for chronic pain
Copyright © 2014 The Cochrane Collaboration.Various devices are available that can electrically stimulate the brain without the need for surgery or any invasive treatment in order to manage chronic pain. There are four main treatment types: repetitive transcranial magnetic stimulation (rTMS) in which the brain is stimulated by a coil applied to the scalp, cranial electrotherapy stimulation (CES) in which electrodes are clipped to the ears or applied to the scalp, transcranial direct current stimulation (tDCS) and reduced impedance non-invasive cortical electrostimulation (RINCE) in which electrodes are applied to the scalp. These have been used to try to reduce pain by aiming to alter the activity of the brain, but the efficacy of these treatments is uncertain.
This review update included 56 studies: 30 of rTMS, 11 of CES, 14 of tDCS and one of RINCE. We judged only three studies as having a low risk of bias. Low or very low-quality evidence suggests that low-frequency rTMS and rTMS applied to pre-frontal areas of the brain are not effective but that a single dose of high-frequency stimulation of the motor cortex area of the brain provides short-term pain relief. This effect appears to be small and may be exaggerated by a number of sources of bias. Studies that gave a course of multiple treatments of rTMS produced conflicting results with no overall effect seen when we pooled the results of these studies. Most studies of rTMS are small and there is substantial variation between studies in terms of the treatment methods used. Low-quality evidence does not suggest that CES or tDCS are effective treatments for chronic pain. A single small study of RINCE provided very low-quality evidence of a short-term effect on pain. For all forms of stimulation the evidence is not conclusive and uncertainty remains.
The reporting of side effects varied across the studies. Of the studies that clearly reported side effects, short-lived and minor side effects such as headache, nausea and skin irritation were usually reported both after real and sham stimulation. There were two reports of seizure following real rTMS.
While the broad conclusions for rTMS and CES have not changed substantially, the addition of this new evidence and the application of the GRADE system has modified some of our interpretation. Previous readers should re-read this update.
More studies of rigorous design and adequate size are required to evaluate accurately all forms of non-invasive brain stimulation for the treatment of chronic pain
Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing
Hierarchical models predict that massive early-type galaxies (mETGs) are the
latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting
with the observational phenomenon of galaxy mass downsizing, which poses that
the most massive galaxies have been in place earlier that their lower-mass
counterparts (since z~0.7). We have developed a semi-analytical model to test
the feasibility of the major-merger origin hypothesis for mETGs, just
accounting for the effects on galaxy evolution of the major mergers strictly
reported by observations. The most striking model prediction is that very few
present-day mETGs have been really in place since z~1, because ~90% of the
mETGs existing at z~1 are going to be involved in a major merger between z~1
and the present. Accounting for this, the model derives an assembly redshift
for mETGs in good agreement with hierarchical expectations, reproducing
observational mass downsizing trends at the same time.Comment: 2 pages, 1 figure, Proceedings of Symposium 2 of JENAM 2010,
"Environment and the Formation of Galaxies: 30 years later", ed. I. Ferreras
and A. Pasquali, Astrophysics & Space Science Proceedings, Springe
Recommended from our members
Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene.
A cDNA clone encoding a portion of Drosophila nuclear lamins Dm1 and Dm2 has been identified by screening a lambda-gt11 cDNA expression library using Drosophila lamin-specific monoclonal antibodies. Two different developmentally regulated mRNA species were identified by Northern blot analysis using the initial cDNA as a probe, and full-length cDNA clones, apparently corresponding to each message, have been isolated. In vitro transcription of both full-length cDNA clones in a pT7 transcription vector followed by in vitro translation in wheat germ lysate suggests that both clones encode lamin Dm0, the polypeptide precursor of lamins Dm1 and Dm2. Nucleotide sequence analyses confirm the impression that both cDNA clones code for the identical polypeptide, which is highly homologous with human lamins A and C as well as with mammalian intermediate filament proteins. The two clones differ in their 3'-untranslated regions. In situ hybridization of lamin cDNA clones to Drosophila polytene chromosomes shows only a single locus of hybridization at or near position 25F on the left arm of chromosome 2. Southern blot analyses of genomic DNA are consistent with the notion that a single or only a few highly similar genes encoding Drosophila nuclear lamin Dm0 exist in the genome
Bio-inspired Tensegrity Soft Modular Robots
In this paper, we introduce a design principle to develop novel soft modular
robots based on tensegrity structures and inspired by the cytoskeleton of
living cells. We describe a novel strategy to realize tensegrity structures
using planar manufacturing techniques, such as 3D printing. We use this
strategy to develop icosahedron tensegrity structures with programmable
variable stiffness that can deform in a three-dimensional space. We also
describe a tendon-driven contraction mechanism to actively control the
deformation of the tensegrity mod-ules. Finally, we validate the approach in a
modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201
Galaxy Disks
The formation and evolution of galactic disks is particularly important for
understanding how galaxies form and evolve, and the cause of the variety in
which they appear to us. Ongoing large surveys, made possible by new
instrumentation at wavelengths from the ultraviolet (GALEX), via optical (HST
and large groundbased telescopes) and infrared (Spitzer) to the radio are
providing much new information about disk galaxies over a wide range of
redshift. Although progress has been made, the dynamics and structure of
stellar disks, including their truncations, are still not well understood. We
do now have plausible estimates of disk mass-to-light ratios, and estimates of
Toomre's parameter show that they are just locally stable. Disks are mostly
very flat and sometimes very thin, and have a range in surface brightness from
canonical disks with a central surface brightness of about 21.5 -mag
arcsec down to very low surface brightnesses. It appears that galaxy
disks are not maximal, except possibly in the largest systems. Their HI layers
display warps whenever HI can be detected beyond the stellar disk, with
low-level star formation going on out to large radii. Stellar disks display
abundance gradients which flatten at larger radii and sometimes even reverse.
The existence of a well-defined baryonic Tully-Fisher relation hints at an
approximately uniform baryonic to dark matter ratio. Thick disks are common in
disk galaxies and their existence appears unrelated to the presence of a bulge
component; they are old, but their formation is not yet understood. Disk
formation was already advanced at redshifts of , but at that epoch
disks were not yet quiescent and in full rotational equilibrium. Downsizing is
now well-established. The formation and history of star formation in S0s is
still not fully understood.Comment: This review has been submitted for Annual Reviews of Astronomy &
Astrophysics, vol. 49 (2011); the final printed version will have fewer
figures and a somewhat shortened text. A pdf-version of this preprint with
high-resolution figures is available from
http://www.astro.rug.nl/~vdkruit/jea3/homepage/disks-ph.pdf. (table of
contents added; 71 pages, 24 figures, 529 references
Coalescent-based genome analyses resolve the early branches of the euarchontoglires
Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods
Determination of urban volatile organic compound emission ratios and comparison with an emissions database
During the NEAQS-ITCT2k4 campaign in New England, anthropogenic VOCs and CO were measured downwind from New York City and Boston. The emission ratios of VOCs relative to CO and acetylene were calculated using a method in which the ratio of a VOC with acetylene is plotted versus the photochemical age. The intercept at the photochemical age of zero gives the emission ratio. The so determined emission ratios were compared to other measurement sets, including data from the same location in 2002, canister samples collected inside New York City and Boston, aircraft measurements from Los Angeles in 2002, and the average urban composition of 39 U.S. cities. All the measurements generally agree within a factor of two. The measured emission ratios also agree for most compounds within a factor of two with vehicle exhaust data indicating that a major source of VOCs in urban areas is automobiles. A comparison with an anthropogenic emission database shows less agreement. Especially large discrepancies were found for the C2-C4 alkanes and most oxygenated species. As an example, the database overestimated toluene by almost a factor of three, which caused an air quality forecast model (WRF-CHEM) using this database to overpredict the toluene mixing ratio by a factor of 2.5 as well. On the other hand, the overall reactivity of the measured species and the reactivity of the same compounds in the emission database were found to agree within 30%. Copyright 2007 by the American Geophysical Union
Functional kernel estimators of conditional extreme quantiles
We address the estimation of "extreme" conditional quantiles i.e. when their
order converges to one as the sample size increases. Conditions on the rate of
convergence of their order to one are provided to obtain asymptotically
Gaussian distributed kernel estimators. A Weissman-type estimator and kernel
estimators of the conditional tail-index are derived, permitting to estimate
extreme conditional quantiles of arbitrary order.Comment: arXiv admin note: text overlap with arXiv:1107.226
Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques
For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid x tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids-apparently stable (non-mosaic) and unstable (mosaic)-and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant
- …