3,187 research outputs found

    Testing spatial aspects of auditory salience

    Get PDF
    Auditory salience describes the extent to which sounds attract the listener’s attention. So far, there have not been any published studies testing if the location of sound relative to the listener influences its salience. In fact, not many experiments in general test auditory attention in a fully spatialised setting, with sounds in front and behind the listener. We modified two experimental methods from the literature so that they can be used to test spatial salience - one based on oddball detection and artificially created sounds, the other based on self-reported attention tracking in a more ecologically valid scenario. Each of these methods has its advantages and each presents different challenges. However, they both seem to indicate that high frequency sounds arriving from the back are slightly less salient. We believe this result could likely be explained by loudness differences

    Influence of source location and temporal structure on spatial auditory saliency

    Get PDF
    Hitherto, not many studies have dealt with spatial auditory saliency. Auditory attention studies concerned with spatial aspects generally concentrate on top-down selective or divided attention, e.g., where subjects are asked to attend to one source at a specific location whilst being distracted with sources from different directions. The work presented here reports on experiments in which bottom-up spatial auditory attention, or saliency, has been tested. The tests were run using a fully immersive 3D audio-visual reproduction system, where interactions between auditory and visual modalities have been included. We tested how temporal structure and absolute location of sound sources around the listener influence saliency and attention

    Innovation sustainability in challenging health-care contexts : embedding clinically led change in routine practice

    Get PDF
    The need for organizational innovation as a means of improving health-care quality and containing costs is widely recognized, but while a growing body of research has improved knowledge of implementation, very little has considered the challenges involved in sustaining change – especially organizational change led ‘bottom-up’ by frontline clinicians. This study addresses this lacuna, taking a longitudinal, qualitative case-study approach to understanding the paths to sustainability of four organizational innovations. It highlights the importance of the interaction between organizational context, nature of the innovation and strategies deployed in achieving sustainability. It discusses how positional influence of service leads, complexity of innovation, networks of support, embedding in existing systems, and proactive responses to changing circumstances can interact to sustain change. In the absence of cast-iron evidence of effectiveness, wider notions of value may be successfully invoked to sustain innovation. Sustainability requires continuing effort through time, rather than representing a final state to be achieved. Our study offers new insights into the process of sustainability of organizational change, and elucidates the complement of strategies needed to make bottom-up change last in challenging contexts replete with competing priorities

    Acoustic Event Detection from Weakly Labeled Data Using Auditory Salience

    Get PDF
    Acoustic Event Detection (AED) is an important task of machine listening which, in recent years, has been addressed using common machine learning methods like Non-negative Matrix Factorization (NMF) or deep learning. However, most of these approaches do not take into consideration the way that human auditory system detects salient sounds. In this work, we propose a method for AED using weakly labeled data that combines a Non-negative Matrix Factorization model with a salience model based on predictive coding in the form of Kalman filters. We show that models of auditory perception, particularly auditory salience, can be successfully incorporated into existing AED methods and improve their performance on rare event detection. We evaluate the method on the Task2 of DCASE2017 Challenge

    Factors modifying the association between birth weight and blood pressure

    Get PDF
    Contains fulltext : 88632.pdf (publisher's version ) (Closed access)1 december 201

    In-ear SpO2 for classification of cognitive workload

    Get PDF
    The brain is the most metabolically active organ in the body, which increases its metabolic activity, and thus oxygen consumption, with increasing cognitive demand. This motivates us to question whether increased cognitive workload may be measurable through changes in blood oxygen saturation. To this end, we explore the feasibility of cognitive workload tracking based on in-ear SpO2 measurements, which are known to be both robust and exhibit minimal delay. We consider cognitive workload assessment based on an N-back task with randomised order. It is shown that the 2-back and 3-back tasks (high cognitive workload) yield either the lowest median absolute SpO2 or largest median decrease in SpO2 in all of the subjects, indicating a measurable and statistically significant decrease in blood oxygen in response to increased cognitive workload. This makes it possible to classify the four N-back task categories, over 5 second epochs, with a mean accuracy of 90.6%, using features derived from in-ear pulse oximetry, including SpO2, pulse rate and respiration rate. These findings suggest that in-ear SpO2 measurements provide sufficient information for the reliable classification of cognitive workload over short time windows, which promises a new avenue for real time cognitive workload tracking

    Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Get PDF
    BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss
    corecore