5,195 research outputs found
Viscous vortical flow calculations over delta wings
Two approaches to calculate turbulent vortical flows over delta wing configurations are illustrated. The first is for a simple delta wing at low speeds using the boundary layer approximation to treat the effects of the secondary separation. The second is for the supersonic case of a generic fighter using the NASA Ames parabolized Navier/Stokes method. Test/theory comparisons are given in both cases
A functional central limit theorem for a Markov-modulated infinite-server queue
The production of molecules in a chemical reaction network is modelled as a
Poisson process with a Markov-modulated arrival rate and an exponential decay
rate. We analyze the distributional properties of , the number of molecules,
under specific time-scaling; the background process is sped up by ,
the arrival rates are scaled by , for large. A functional central limit
theorem is derived for , which after centering and scaling, converges to an
Ornstein-Uhlenbeck process. A dichotomy depending on is observed. For
the parameters of the limiting process contain the deviation
matrix associated with the background process.Comment: 4 figure
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission
The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy
range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have
been analyzed. During the first two years PKS 0528+134 was most significantly
detected at energies above 3 MeV. During the last year there is only evidence
for the quasar at energies below 3 MeV indicating a spectral change. The
time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well
represented by a power-law shape. Spectra collected from different
observational periods reveal different power-law shapes: a hard state during
flaring observations reported by EGRET, and a soft state otherwise. The
combined simultaneous EGRET and COMPTEL spectra indicate these two spectral
states as well. During low intensisty gamma-ray phases no spectral break is
obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray
flaring phases however, the combined COMPTEL and EGRET data require a spectral
bending at MeV-energies. By fitting broken power-law functions the best-fit
values for the break in photon index range between 0.6 and 1.7, and for the
break energy between ~5 MeV and ~20 MeV. Because the flux values measured by
COMPTEL below 3 MeV in both states are roughly equal, the observations would be
consistent with an additional spectral component showing up during gamma-ray
flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a
high-energy electron-positron population with a low-energy cutoff in their bulk
Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for
gamma-ray flaring phases shows that the major energy release across the entire
electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33
(1997
COMPTEL Observations of AGN at MeV-Energies
The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at
MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars
and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With
these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy
in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the
Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in
Taormina, Italy, 14-18 September 199
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Semi-Empirical Model for Nano-Scale Device Simulations
We present a new semi-empirical model for calculating electron transport in
atomic-scale devices. The model is an extension of the Extended H\"uckel method
with a self-consistent Hartree potential. This potential models the effect of
an external bias and corresponding charge re-arrangements in the device. It is
also possible to include the effect of external gate potentials and continuum
dielectric regions in the device. The model is used to study the electron
transport through an organic molecule between gold surfaces, and it is
demonstrated that the results are in closer agreement with experiments than ab
initio approaches provide. In another example, we study the transition from
tunneling to thermionic emission in a transistor structure based on graphene
nanoribbons.Comment: 8 pages, 8 figures. Submitted to PR
Human osteoblast growth and maturation in response to metformin and the thienopyridone, A769662
Metformin (Met) is a biguanide drug widely used in the treatment and management of non insulin-dependent diabetes mellitus. In recent years it has emerged that Met, by stimulating adenosine monophosphate-activated protein kinase (AMPK), can promote the maturation of osteoblasts, albeit cells sourced from rodent and murine calvaria. Finding novel uses for existing drugs is especially appealing, primarily from the fiscal and time constraints posed in developing new products. Identifying agents capable of supporting human osteoblast growth and differentiation are attractive in a bone regenerative context. Since studies using Met are invariably restricted to rodent and murine osteoblasts we sought to investigate whether this biguanide might have a positive influence upon human osteoblast growth and maturation. To this end we examined the effect of Met on two osteoblast-like cell lines, MG63 and Saos-2, and compared the responses to primary human osteoblasts and their bone marrow-derived stem cell progeny. Furthermore we examined the effect of a cell permeable Met surrogate, A769662, which is a potent and far more selective activator of AMPK. Herein we report that Met is without influence on cell growth. Furthermore the application of Met, albeit in the millimolar range, actually inhibited osteoblast maturation. Conversely A769662 was toxic to the osteosarcoma-derived cell lines, MG63 and Saos-2, but without effect on the growth of primary cells or their stem cell progenitors. Since the cell lines are known to be p53 deficient we propose that activation of AMPK by A769662 could form part of the arsenal in the fight against osteosarcoma
Model selection in High-Dimensions: A Quadratic-risk based approach
In this article we propose a general class of risk measures which can be used
for data based evaluation of parametric models. The loss function is defined as
generalized quadratic distance between the true density and the proposed model.
These distances are characterized by a simple quadratic form structure that is
adaptable through the choice of a nonnegative definite kernel and a bandwidth
parameter. Using asymptotic results for the quadratic distances we build a
quick-to-compute approximation for the risk function. Its derivation is
analogous to the Akaike Information Criterion (AIC), but unlike AIC, the
quadratic risk is a global comparison tool. The method does not require
resampling, a great advantage when point estimators are expensive to compute.
The method is illustrated using the problem of selecting the number of
components in a mixture model, where it is shown that, by using an appropriate
kernel, the method is computationally straightforward in arbitrarily high data
dimensions. In this same context it is shown that the method has some clear
advantages over AIC and BIC.Comment: Updated with reviewer suggestion
- …