13,644 research outputs found

    Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions

    Full text link
    Using an eikonal analysis, we examine the validity of the factorization theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example, using the additive quark model and meson vector dominance, we directly show that for all energies and values of the eikonal, that the factorization theorem sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can also compute the survival probability of large rapidity gaps in high energy pbar p and pp collisions. We show that the survival probabilities are identical (at the same energy) for gamma p and gamma gamma collisions, as well as for nucleon-nucleon collisions. We further show that neither the factorization theorem nor the reaction-independence of the survival probabilities depends on the assumption of an additive quark model, but, more generally, depends on the opacity of the eikonal being independent of whether the reaction is n-n, gamma p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction

    Protective coatings for chromium alloys Final summary report, Nov. 1, 1965 - Jul. 13, 1967

    Get PDF
    Aluminum protective coatings for chromium alloy

    The High Energy Behavior of the Forward Scattering Parameters---An Amplitude Analysis Update

    Get PDF
    Utilizing the most recent experimental data, we reanalyze high energy \pbar p and pp data, using the asymptotic amplitude analysis, under the assumption that we have reached `asymptopia'. This analysis gives strong evidence for a log(s/s0)\log \,(s/s_0) dependence at {\em current} energies and {\em not} log2(s/s0)\log^2 (s/s_0), and also demonstrates that odderons are {\em not} necessary to explain the experimental data.Comment: 7 pages in LaTeX, 4 figures and 5 files, uuencoded in file "sigall.uu

    Democratization’s Risk Premium: Partisan and Opportunistic Political Business Cycle Effects on Sovereign Ratings in Developing Countries

    Full text link
    We use partisan and opportunistic political business cycle (“PBC”) considerations to develop a framework for explaining election-period decisions by credit rating agencies (“agencies”) publishing developing country sovereign risk-ratings (“ratings”). We test six hypotheses derived from the framework with 482 agency ratings for 19 countries holding 39 presidential elections from 1987-2000. We find that ratings are linked to the partisan orientation of incumbents facing election and to expectations of incumbent victory. Consistent with the framework, rating effects are sometimes greater for right-wing compared to left-wing incumbents, perhaps, because partisan PBC considerations with right-wing (left-wing) incumbents reinforce (counteract) opportunistic PBC considerations.http://deepblue.lib.umich.edu/bitstream/2027.42/39931/3/wp546.pd

    DEMOCRACY’S SPREAD: Elections and Sovereign Debt in Developing Countries

    Full text link
    We use partisan and opportunistic political business cycle (“PBC”) considerations to develop and test a framework for explaining election-period changes in credit spreads for developing country sovereign bonds. Pre-election bond spread trends are significantly linked both to the partisan orientation of incumbents facing election and to expectations of incumbent victory. Bond spreads for right-wing (leftwing) incumbents increase (decrease) as the likelihood of left-wing (right-wing) challenger victory increases. For right-wing incumbent partisan and opportunistic PBC effects bondholder risk perceptions are mutually reinforcing. For left-wing incumbents partisan PBC effects dominate bondholder risk perceptions compared to opportunistic PBC effects.http://deepblue.lib.umich.edu/bitstream/2027.42/39961/3/wp575.pd

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    A new numerical method for obtaining gluon distribution functions G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2), from the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2)

    Get PDF
    An exact expression for the leading-order (LO) gluon distribution function G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2) from the DGLAP evolution equation for the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2) for deep inelastic γp\gamma^* p scattering has recently been obtained [M. M. Block, L. Durand and D. W. McKay, Phys. Rev. D{\bf 79}, 014031, (2009)] for massless quarks, using Laplace transformation techniques. Here, we develop a fast and accurate numerical inverse Laplace transformation algorithm, required to invert the Laplace transforms needed to evaluate G(x,Q2)G(x,Q^2), and compare it to the exact solution. We obtain accuracies of less than 1 part in 1000 over the entire xx and Q2Q^2 spectrum. Since no analytic Laplace inversion is possible for next-to-leading order (NLO) and higher orders, this numerical algorithm will enable one to obtain accurate NLO (and NNLO) gluon distributions, using only experimental measurements of F2γp(x,Q2)F_2^{\gamma p}(x,Q^2).Comment: 9 pages, 2 figure

    Ground state of a confined Yukawa plasma

    Get PDF
    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.Comment: 5 pages, 4 figure
    corecore