12,588 research outputs found

    Signal processing technique for non-invasive real-time estimation of cardiac output by inductance cardiography (thoracocardiography)

    Get PDF
    Inductance cardiography (thoracocardiography) non-invasively monitors changes in stroke volume by recording ventricular volume curves with an inductive plethysmographic transducer encircling the chest at the level of the heart. Clinical application of this method has been hampered, as data analysis has not been feasible in real time. Therefore a novel, real-time signal processing technique for inductance cardiography has been developed. Its essential concept consists in performance of multiple tasks by several, logically linked signal processing modules that have access to common databases. Based on these principles, a software application was designed that performs acquisition, display, filtering and ECG-triggered ensemble averaging of inductance signals and separates cardiogenic waveforms from noise related to respiration and other sources. The resulting ventricular volume curves are automatically analysed. Performance of the technique for monitoring cardiac output in real time was compared with thermodilution in four patients in an intensive care unit. The bias (mean difference) among 76 paired thoracocardiographic and thermodilution derived changes in cardiac output was 0%; limits of agreement (±2 SD of the bias) were ±25%. It is concluded that the proposed signal processing technique for inductance cardiography holds promise for non-invasive, real-time estimation of changes in cardiac outpu

    Nonequilibrium perturbation theory of the spinless Falicov-Kimball model

    Full text link
    We perform a perturbative analysis for the nonequilibrium Green functions of the spinless Falicov-Kimball model in the presence of an arbitrary external time-dependent but spatially uniform electric field. The conduction electron self-energy is found from a strictly truncated second-order perturbative expansion in the local electron-electron repulsion U. We examine the current at half-filling, and compare to both the semiclassical Boltzmann equation and exact numerical solutions for the contour-ordered Green functions from a transient-response formalism (in infinite dimensions) on the Kadanoff-Baym-Keldysh contour. We find a strictly truncated perturbation theory in the two-time formalism cannot reach the long-time limit of the steady state; instead it illustrates pathological behavior for times larger than approximately 2/U

    A variational problem on Stiefel manifolds

    Full text link
    In their paper on discrete analogues of some classical systems such as the rigid body and the geodesic flow on an ellipsoid, Moser and Veselov introduced their analysis in the general context of flows on Stiefel manifolds. We consider here a general class of continuous time, quadratic cost, optimal control problems on Stiefel manifolds, which in the extreme dimensions again yield these classical physical geodesic flows. We have already shown that this optimal control setting gives a new symmetric representation of the rigid body flow and in this paper we extend this representation to the geodesic flow on the ellipsoid and the more general Stiefel manifold case. The metric we choose on the Stiefel manifolds is the same as that used in the symmetric representation of the rigid body flow and that used by Moser and Veselov. In the extreme cases of the ellipsoid and the rigid body, the geodesic flows are known to be integrable. We obtain the extremal flows using both variational and optimal control approaches and elucidate the structure of the flows on general Stiefel manifolds.Comment: 30 page

    Steady-state nonequilibrium dynamical mean-field theory and the quantum Boltzman

    Full text link
    We derive the formalism for steady state nonequilibrium dynamical mean-field theory in a real-time formalism along the Kadanoff-Baym contour. The resulting equations of motion are first transformed to Wigner coordinates (average and relative time), and then re-expressed in terms of differential operators. Finally, we perform a Fourier transform with respect to the relative time, and take the first-order limit in the electric field to produce the quantum Boltzmann equation for dynamical mean-field theory. We next discuss the structure of the equations and their solutions, describing how these equations reduce to the Drude result in the limit of a constant relaxation time. We also explicitly demonstrate the equivalence between the Kubo and nonequilibrium approaches to linear response. There are a number of interesting modifications of the conventional quantum Boltzmann equation that arise due to the underlying bandstructure of the lattice.Comment: (14 pages, proceedings of the Workshop on Progress in Nonequilibrium Green's Functions III, Kiel Germany

    Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    Full text link
    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.Comment: 10 pages, 3 figures, 1 Table, submitted to Phys. Rev. on July 25th 200

    On the lowest energy excitations of one-dimensional strongly correlated electrons

    Full text link
    It is proven that the lowest excitations Elow(k)E_{low}(k) of one-dimensional half-integer spin generalized Heisenberg models and half-filled extended Hubbard models are π\pi-periodic functions. For Hubbard models at fractional fillings Elow(k+2kf)=Elow(k)E_{low}{(k+ 2 k_f)} = E_{low}(k), where 2kf=πn2 k_f= \pi n, and nn is the number of electrons per unit cell. Moreover, if one of the ground states of the system is magnetic in the thermodynamic limit, then Elow(k)=0E_{low}(k) = 0 for any kk, so the spectrum is gapless at any wave vector. The last statement is true for any integer or half-integer value of the spin.Comment: 6 Pages, Revtex, final versio

    Spin Susceptibility of an Ultra-Low Density Two Dimensional Electron System

    Full text link
    We determine the spin susceptibility in a two dimensional electron system in GaAs/AlGaAs over a wide range of low densities from 2×109\times10^{9}cm−2^{-2} to 4×1010\times10^{10}cm−2^{-2}. Our data can be fitted to an equation that describes the density dependence as well as the polarization dependence of the spin susceptibility. It can account for the anomalous g-factors reported recently in GaAs electron and hole systems. The paramagnetic spin susceptibility increases with decreasing density as expected from theoretical calculations.Comment: 5 pages, 2 eps figures, to appear in PR

    When physics helps mathematics: calculation of the sophisticated multiple integral

    Full text link
    There exists a remarkable connection between the quantum mechanical Landau-Zener problem and purely classical-mechanical problem of a ball rolling on a Cornu spiral. This correspondence allows us to calculate a complicated multiple integral, a kind of multi-dimensional generalization of Fresnel integrals. A direct method of calculation is also considered but found to be successful only in some low-dimensional cases. As a byproduct of this direct method, an interesting new integral representation for ζ(2)\zeta(2) is obtained.Comment: 13 pages, no figure

    Measuring the temporal coherence of an atom laser beam

    Full text link
    We report on the measurement of the temporal coherence of an atom laser beam extracted from a 87^{87}Rb Bose-Einstein condensate. Reflecting the beam from a potential barrier creates a standing matter wave structure. From the contrast of this interference pattern, observed by magnetic resonance imaging, we have deduced an energy width of the atom laser beam which is Fourier limited by the duration of output coupling. This gives an upper limit for temporal phase fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure
    • …
    corecore