34 research outputs found

    Nitric Oxide Is a Mediator of Antiproliferative Effects Induced by Proinflammatory Cytokines on Pancreatic Beta Cells

    Get PDF
    Nitric oxide (NO) is involved in several biological processes. In type 1 diabetes mellitus (T1DM), proinflammatory cytokines activate an inducible isoform of NOS (iNOS) in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1) in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2) during the insulitis stage prior to diabetes onset using the Biobreeding (BB) rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis

    MTORC1 signaling and regulation of pancreatic β-cell mass

    Get PDF
    The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging

    Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing

    Get PDF
    Deregulation of mTOR complex 1 (mTORC1) signalling increases the risk for metabolic diseases, including type 2 diabetes. Here we show that β-cell-specific loss of mTORC1 causes diabetes and β-cell failure due to defects in proliferation, autophagy, apoptosis and insulin secretion by using mice with conditional (βraKO) and inducible (MIP-βraKO(f/f)) raptor deletion. Through genetic reconstitution of mTORC1 downstream targets, we identify mTORC1/S6K pathway as the mechanism by which mTORC1 regulates β-cell apoptosis, size and autophagy, whereas mTORC1/4E-BP2-eIF4E pathway regulates β-cell proliferation. Restoration of both pathways partially recovers β-cell mass and hyperglycaemia. This study also demonstrates a central role of mTORC1 in controlling insulin processing by regulating cap-dependent translation of carboxypeptidase E in a 4EBP2/eIF4E-dependent manner. Rapamycin treatment decreases CPE expression and insulin secretion in mice and human islets. We suggest an important role of mTORC1 in β-cells and identify downstream pathways driving β-cell mass, function and insulin processing

    Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion

    Get PDF
    Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance

    Architecture of Androgen Receptor Pathways Amplifying Glucagon-Like Peptide-1 Insulinotropic Action in Male Pancreatic β Cells

    Get PDF
    Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of C
    corecore