3,195 research outputs found
Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies
Two-photon quantum interference at a beam splitter, commonly known as
Hong-Ou-Mandel interference, was recently demonstrated with
\emph{microwave-frequency} photons by Lang \emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-order
cross-correlation and auto-correlation functions of the microwave fields at the
outputs of the beam splitter. Here we present the calculation of these
correlation functions for the cases of inputs corresponding to: (i) trains of
\emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii)
resonant fluorescent microwave fields from \emph{continuously-driven} circuit
QED systems. The calculations include the effects of the finite bandwidth of
the detection scheme. In both cases, the signature of two-photon quantum
interference is a suppression of the second-order cross-correlation function
for small delays. The experiment described in Ref.
\onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian}
single photons, and very good agreement between the calculations and the
experimental data was obtained.Comment: 11 pages, 3 figure
Selectivity and Metaplasticity in a Unified Calcium-Dependent Model
A unified, biophysically motivated Calcium-Dependent Learning model has been shown to account for various rate-based and spike time-dependent paradigms for inducing synaptic plasticity. Here, we investigate the properties of this model for a multi-synapse neuron that receives inputs with different spike-train statistics. In addition, we present a physiological form of metaplasticity, an activity-driven regulation mechanism, that is essential for the robustness of the model. A neuron thus implemented develops stable and selective receptive fields, given various input statistic
Learning circuits with few negations
Monotone Boolean functions, and the monotone Boolean circuits that compute
them, have been intensively studied in complexity theory. In this paper we
study the structure of Boolean functions in terms of the minimum number of
negations in any circuit computing them, a complexity measure that interpolates
between monotone functions and the class of all functions. We study this
generalization of monotonicity from the vantage point of learning theory,
giving near-matching upper and lower bounds on the uniform-distribution
learnability of circuits in terms of the number of negations they contain. Our
upper bounds are based on a new structural characterization of negation-limited
circuits that extends a classical result of A. A. Markov. Our lower bounds,
which employ Fourier-analytic tools from hardness amplification, give new
results even for circuits with no negations (i.e. monotone functions)
Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region.
Past research projects for the year 1974-1975 are listed along with future research programs in the area of air pollution control, remote sensor analysis of smoke plumes, the biosphere component, and field experiments. A detailed budget analysis is presented. Attachments are included on the following topics: mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques, and use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia
A theoretical/experimental program to develop active optical pollution sensors
Light detection and ranging (LIDAR) technology was applied to the assessment of air quality, and its usefulness was evaluated by actual field tests. Necessary hardware was successfully constructed and operated in the field. Measurements of necessary physical parameters, such as SO2 absorption coefficients were successfully completed and theoretical predictions of differential absorption performance were reported. Plume modeling improvements were proposed. A full scale field test of equipment, data analysis and auxiliary data support was conducted in Maryland during September 1976
Protocol for universal gates in optimally biased superconducting qubits
We present a new experimental protocol for performing universal gates in a
register of superconducting qubits coupled by fixed on-chip linear reactances.
The qubits have fixed, detuned Larmor frequencies and can remain, during the
entire gate operation, biased at their optimal working point where decoherence
due to fluctuations in control parameters is suppressed to first order.
Two-qubit gates are performed by simultaneously irradiating two qubits at their
respective Larmor frequencies with appropriate amplitude and phase, while
one-qubit gates are performed by the usual single-qubit irradiation pulses
Low cost silicon solar array project large area silicon sheet task: Silicon web process development
Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals
- …
