1,616 research outputs found
Biomolecular simulations at the exascale: From drug design to organelles and beyond.
The rapid advancement in computational power available for research offers to bring not only quantitative improvements, but also qualitative changes in the field of biomolecular simulation. Here, we review the state of biomolecular dynamics simulations at the threshold to exascale resources becoming available. Both developments in parallel and distributed computing will be discussed, providing a perspective on the state of the art of both. A main focus will be on obtaining binding and conformational free energies, with an outlook to macromolecular complexes and (sub)cellular assemblies
On classical finite and affine W-algebras
This paper is meant to be a short review and summary of recent results on the
structure of finite and affine classical W-algebras, and the application of the
latter to the theory of generalized Drinfeld-Sokolov hierarchies.Comment: 12 page
Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force
The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens
Is TEA an inhibitor for human Aquaporin-1?
Excessive water uptake through aquaporins can be life threatening, and disregulation of water permeability causes many diseases. Therefore, reversible aquaporin inhibitors are highly desired. In this paper, we identified the binding site for tetraethylammonium (TEA) of the membrane water channel aquaporin-1 by a combined molecular docking and molecular dynamics simulation approach. The binding site identified from docking studies was independently confirmed with an unbiased molecular dynamics simulation of an aquaporin tetramer embedded in a lipid membrane, surrounded by a 100-mM tetraethylammonium solution in water. A third independent assessment of the binding site was obtained by umbrella sampling simulations. These simulations, in addition, revealed a binding affinity of more than 17 kJ/mol, corresponding to an IC50 value of << 3 mM. Finally, we observed in our simulations a 50% reduction of the water flux in the presence of TEA, in agreement with water permeability measurements on aquaporin expressed in oocytes. These results confirm TEA as a putative lead for an aquaporin-1 inhibitor
Nutritional concerns, health and survival in old age
The ageing process is—apart from chance or good luck—not only influenced by factors intrinsic to the individual, but also by extrinsic factors that include environmental and lifestyle variables. This paper deals with the epidemiological evidence for the role of dietary patterns and key nutritional concerns in relation to survival and ageing related disorders that present themselves in later life. Dietary patterns, such as the Mediterranean diet, characterized by mainly plant foods including protective factors e.g. vegetables, nuts and monounsaturated fatty acids and excluding harmful factors e.g. trans-fatty acids and foods with a high glycemic factor, appear to be relevant even in old age. Specific nutritional concerns focus on general undernutrition, vitamin D and vitamin B12. Prevalence of nutritional inadequacies, diagnostic criteria, causes and health consequences are described. The paper ends with recommendations for guidance on healthy diets for elderly people. An important challenge should be research to further expand the knowledge base, acknowledging the complexity of the ageing process and integrating different dimensions of research into human healthy ageing in properly designed studies. In the mean time reversing poor adherence to existing guidelines for a healthy diet remains a first challenge in public health nutritional practices
In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers
The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation
Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins
The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5
sigma model as well as a limit of a nonlinear topological A-model, introduced
by Berkovits. We study the latter, especially its symmetries, and map them to
higher spin algebras.
We show the following. The linear A-model possesses affine
\AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0
current-current perturbation is the nonlinear model. We find that the
perturbation preserves -algebra symmetry at critical
level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with
the properties that the perturbation is BRST-exact. Further, the
BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the
non-trivial generators of the -algebra. The Zhu functor
maps the linear model to a higher spin theory. We analyze its
\SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page
A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin
The major histocompatibility complex class I gene repertoire was investigated in a large panel of rhesus macaques of Chinese origin. As observed in Indian animals, subjects of Chinese derivation display Mamu-B gene copy number variation, and the sum of expressed genes varies among haplotypes. In addition, these genes display differential transcription levels. The majority of the Mamu-B alleles discovered during this investigation appear to be unique for the population studied. Only one particular Mamu-B haplotype is shared between Indian and Chinese animals, and it must have been present in the progenitor stock. Hence, the data highlight the fact that most allelic polymorphism, and most of the Mamu-B haplotypes themselves, are of relatively recent origin and were most likely generated after the separation of the Indian and Chinese rhesus macaque populations
External rotation during elevation of the arm
Background Knowledge about the pattern of rotation during arm elevation is necessary for a full understanding of shoulder function, and it is also useful for planning of rehabilitation protocols to restore range of motion in shoulders in disorder. However, there are insufficient in vivo data available
- …