24 research outputs found

    Backward walking training improves balance in school-aged boys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls remain a major cause of childhood morbidity and mortality. It is suggested that backward walking (BW) may offer some benefits especially in balance and motor control ability beyond those experienced through forward walking (FW), and may be a potential intervention for prevention of falls. The objective of this study was to investigate the effects of BW on balance in boys.</p> <p>Methods</p> <p>Sixteen healthy boys (age: 7.19 ± 0.40 y) were randomly assigned to either an experimental or a control group. The experimental group participated in a BW training program (12-week, 2 times weekly, and 25-min each time) but not the control group. Both groups had five dynamic balance assessments with a Biodex Stability System (anterior/posterior, medial/lateral, and overall balance index) before, during and after the training (week- 0, 4, 8, 12, 24). Six control and six experimental boys participated in a study comparing kinematics of lower limbs between FW and BW after the training (week-12).</p> <p>Results</p> <p>The balance of experimental group was better than that of control group after 8 weeks of training (<it>P </it>< 0.01), and was still better than that of control group (<it>P </it>< 0.05), when the BW training program had finished for 12 weeks. The kinematic analysis indicated that there was no difference between control and experimental groups in the kinematics of both FW and BW gaits after the BW training (<it>P </it>> 0.05). Compared to FW, the duration of stance phase of BW tended to be longer, while the swing phase, stride length, walking speed, and moving ranges of the thigh, calf and foot of BW decreased (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Backward walking training in school-aged boys can improve balance.</p

    Incorporating patterns of disperser behaviour into models of seed dispersal and its effects on estimated dispersal curves

    No full text
    The processes determining where seeds fall relative to their parent plant influence the spatial structure and dynamics of plant populations and communities. For animal dispersed species the factors influencing seed shadows are poorly understood. In this paper we test the hypothesis that the daily temporal distribution of disperser behaviours, for example, foraging and movement, influences dispersal outcomes, in particular the shape and scale of dispersal curves. To do this, we describe frugivory and the dispersal curves produced by the southern cassowary, Casuarius casuarius, the only large-bodied disperser in Australia’s rainforests. We found C. casuarius consumed fruits of 238 species and of all fleshy-fruit types. In feeding trials, seeds of 11 species were retained on average for 309 min (±256 SD). Sampling radio-telemetry data randomly, that is, assuming foraging occurs at random times during the day, gives an estimated average dispersal distance of 239 m (±207 SD) for seeds consumed by C. casuarius. Approximately 4% of seeds were dispersed further than 1,000 m. However, observation of wild birds indicated that foraging and movement occur more frequently early and late in the day. Seeds consumed early in the day were estimated to receive dispersal distances 1.4 times the ‘random’ average estimate, while afternoon consumed seeds received estimated mean dispersal distances of 0.46 times the ‘random’ estimate. Sampling movement data according to the daily distribution of C. casuarius foraging gives an estimated mean dispersal distance of 337 m (±194 SD). Most animals’ behaviour has a non-random temporal distribution. Consequently such effects should be common and need to be incorporated into seed shadow estimation. Our results point to dispersal curves being an emergent property of the plant–disperser interaction rather than being a property of a plant or species

    Switching radical stability by pH-induced orbital conversion

    Get PDF
    In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature

    Plasticity of calcium channels in dendritic spines

    Get PDF
    Voltage-sensitive Ca2+ channels (VSCCs) constitute a major source of calcium ions in dendritic spines, but their function is unknown. Here we show that R-type VSCCs in spines of rat CA1 pyramidal neurons are depressed for at least 30 min after brief trains of back-propagating action potentials. Populations of channels in single spines are depressed stochastically and synchronously, independent of channels in the parent dendrite and other spines, implying that depression is the result of signaling restricted to individual spines. Induction of VSCC depression blocks theta-burst-induced long-term potentiation (LTP), indicating that postsynaptic action potentials can modulate synaptic plasticity by tuning VSCCs. Induction of depression requires [Ca2+] elevations and activation of L-type VSCCs, which activate Ca2+/calmodulin-dependent kinase II (CaMKII) and a cyclic adenosine monophosphate (cAMP)-dependent pathway. Given that L-type VSCCs do not contribute measurably to Ca2+ influx in spines, they must activate downstream effectors either directly through voltage-dependent conformational changes or via [Ca2+] microdomains
    corecore