116 research outputs found

    Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Get PDF
    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes

    Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine association of nine single nucleotide polymorphisms (SNPs) in ADP ribosyltransferase-1 (ADPRT1), aldo-keto reductase family 1 member B1 (AKR1B1), receptor for advanced glycation end-products (RAGE), glutamine:fructose-6-phosphate amidotransferase-2 (GFPT2), and plasminogen activator inhibitor-1 (PAI-1) genes with chronic renal insufficiency (CRI) among Asian Indians with type 2 diabetes; and to identify epistatic interactionss between genes from the present study and those from renin-angiotensin-aldosterone system (RAAS), and chemokine-cytokine, dopaminergic and oxidative stress pathways (previously investigated using the same sample set).</p> <p>Methods</p> <p>Type 2 diabetes subjects with CRI (serum creatinine ≥3.0 mg/dl) constituted the cases (n = 196), and ethnicity and age matched individuals with diabetes for a duration of ≥ 10 years, normal renal functions and normoalbuminuria recruited as controls (n = 225). Allelic and genotypic constitution of 10 polymorphisms (SNPs) from five genes namely- <it>ADPRT1</it>, <it>AKR1B1, RAGE, GFPT2 </it>and <it>PAI-1 </it>with diabetic CRI was investigated. The genetic associations were evaluated by computation of odds ratio and 95% confidence interval. Multiple logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study epistatic interactions between SNPs in different genes.</p> <p>Results</p> <p>Single nucleotide polymorphisms -429 T>C in <it>RAGE </it>and rs7725 C>T SNP in 3' UTR in <it>GFPT2 </it>gene showed a trend towards association with diabetic CRI. Investigation using miRBase statistical tool revealed that rs7725 in <it>GFPT2 </it>was a perfect target for predicted miRNA (hsa miR-378) suggesting the presence of the variant 'T' allele may result in an upregulation of GFPT2 contributing to diabetic renal complication. Epistatic interaction between SNPs in transforming growth factor <it>TGF-β1 </it>(investigated using the same sample set and reported elsewhere) and <it>GFPT2 </it>genotype was observed.</p> <p>Conclusions</p> <p>Association of SNPs in <it>RAGE </it>and <it>GFPT2 </it>suggest that the genes involved in modulation of oxidative pathway could be major contributor to diabetic chronic renal insufficiency. In addition, GFPT2 mediated overproduction of TGF-β1 leading to endothelial expansion and thereby CRI seems likely, suggested by our observation of a significant interaction between GFPT2 with TGF-β1 genes. Further, identification of predicted miRNA targets spanning the associated SNP in <it>GFPT2 </it>implicates the rs7725 SNP in transcriptional regulation of the gene, and suggests <it>GFPT2 </it>could be a relevant target for pharmacological intervention. Larger replication studies are needed to confirm these observations.</p

    Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease

    Get PDF
    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 \textit{ITGA4 } and ITGB8\textit{ITGB8}) and at previously implicated loci (ITGAL \textit{ITGAL }and ICAM1\textit{ICAM1}). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2\textit{PLCG2}, and a negative regulator of inflammation, SLAMF8\textit{SLAMF8}. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.This work was co-funded by the Wellcome Trust [098051] and the Medical Research Council, UK [MR/J00314X/1]. Case collections were supported by Crohn’s and Colitis UK. KMdL, LM, CAL, YL, DR, JG-A, NJP, CAA and JCB are supported by the Wellcome Trust [098051; 093885/Z/10/Z; 094491/Z/10/Z]. KMdL is supported by a Woolf Fisher Trust scholarship. CAL is a clinical lecturer funded by the NIHR. We thank Anna Stanton for co-ordinating the Guy’s and St Thomas’ patient recruitment. We acknowledge support from the Department of Health via the NIHR comprehensive Biomedical Research Centre awards to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and to Addenbrooke’s Hospital, Cambridge in partnership with the University of Cambridge. This research was also supported by the NIHR Newcastle Biomedical Research Centre. The UK Household Longitudinal Study is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council

    A water-based training program that include perturbation exercises to improve stepping responses in older adults: study protocol for a randomized controlled cross-over trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gait and balance impairments may increase the risk of falls, the leading cause of accidental death in the elderly population. Fall-related injuries constitute a serious public health problem associated with high costs for society as well as human suffering. A rapid step is the most important protective postural strategy, acting to recover equilibrium and prevent a fall from initiating. It can arise from large perturbations, but also frequently as a consequence of volitional movements. We propose to use a novel water-based training program which includes specific perturbation exercises that will target the stepping responses that could potentially have a profound effect in reducing risk of falling. We describe the water-based balance training program and a study protocol to evaluate its efficacy (Trial registration number #NCT00708136).</p> <p>Methods/Design</p> <p>The proposed water-based training program involves use of unpredictable, multi-directional perturbations in a group setting to evoke compensatory and volitional stepping responses. Perturbations are made by pushing slightly the subjects and by water turbulence, in 24 training sessions conducted over 12 weeks. Concurrent cognitive tasks during movement tasks are included. Principles of physical training and exercise including awareness, continuity, motivation, overload, periodicity, progression and specificity were used in the development of this novel program. Specific goals are to increase the speed of stepping responses and improve the postural control mechanism and physical functioning. A prospective, randomized, cross-over trial with concealed allocation, assessor blinding and intention-to-treat analysis will be performed to evaluate the efficacy of the water-based training program. A total of 36 community-dwelling adults (age 65–88) with no recent history of instability or falling will be assigned to either the perturbation-based training or a control group (no training). Voluntary step reaction times and postural stability using stabiliogram diffusion analysis will be tested before and after the 12 weeks of training.</p> <p>Discussion</p> <p>This study will determine whether a water-based balance training program that includes perturbation exercises, in a group setting, can improve speed of voluntary stepping responses and improve balance control. Results will help guide the development of more cost-effective interventions that can prevent the occurrence of falls in the elderly.</p

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Testing breast cancer serum biomarkers for early detection and prognosis in pre-diagnosis samples

    Get PDF
    This research was funded by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre. UKCTOCS was core funded by the Medical Research Council, Cancer Research UK, and the Department of Health with additional support from the Eve Appeal, Special Trustees of Bart’s and the London, and Special Trustees of UCLH. OB and JFT also received support from the Eve Appeal Gynaecological Cancer Research Trust and Cancer Research UK PRC Programme Grant A12677
    • …
    corecore