16 research outputs found

    Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    Get PDF
    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb[superscript 2+]) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb[superscript 2+] ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb[superscript 2+] ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb[superscript 2+] ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.SUTD-MIT International Design Center (Research Grant IDG11200105/IDD11200109)Singapore-MIT Allianc

    Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration

    Get PDF
    Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO2, ZnO, and CeO2 were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment

    Agglomeration and sedimentation of titanium dioxide nanoparticles (n-tio2) in synthetic and real waters

    No full text
    The recent detection of titanium dioxide nanoparticles (n-TiO2) in wastewaters raised concerns about its fate in the aquatic environment, which is related to its mobility through water bodies. Laboratory experiments of n-TiO2 (particle size distribution: 10–65 nm) dispersed into both synthetic and real aqueous solutions under environmentally realistic concentrations (0.01, 0.1, 1 and 10 mg/l) were conducted over a time of 50 h to mimic duration of ecotoxicological tests. Agglomeration and sedimentation behaviour were measured under controlled conditions of salinity (0–35 %), ionic composition and strength, pH and dissolved organic carbon (DOC). Physico-chemical parameters and particle agglomeration in the dispersions were investigated by transmission electron microscopy, Brunauer, Emmett and Teller method and dynamic light scattering. A fluorescence spectrophotometer operating in the nephelometric mode was employed to obtain the sedimentation rates of n-TiO2. The overall results showed that agglomeration and sedimentation of n-TiO2 were affected mainly by the initial concentration. Sedimentation data fitted satisfactorily (R2 in the range of 0.74–0.98; average R2: 0.90) with a first-order kinetic equation.The settling rate constant, k, increased by approx. one order of magnitude by moving from the lowest to the highest concentration, resulting very similar especially for all dispersions at 1(k = 8 9 10-6 s-1) and 10mg/l (k = 2 9 10-5 s-1) n-TiO2, regardless the ionic strength and composition of dispersions. The implication of these results on toxicological testing is discussed
    corecore