2,832 research outputs found

    Melting mud in Earth's mantle

    Get PDF
    Melting of subducted sediment remains controversial, as direct observation of sediment melt generation at mantle depths is not possible. Geochemical fingerprints provide indirect evidence for subduction delivery of sediment to the mantle; however, sediment abundance in mantle-derived melt is generally low (0%ā€“2%), and difficult to detect. Here we provide evidence for melting of subducted sediment in granite sampled from an exhumed mantle section. Peraluminous granite dikes that intrude peridotite in the Omanā€“United Arab Emirates ophiolite have U-Pb ages of 99.8 Ā± 3.3 Ma that predate obduction. The dikes have unusually high oxygen isotope (Ī“18O) values for whole rock (14ā€“23ā€°) and quartz (20ā€“22ā€°), and yield the highest Ī“18O zircon values known (14ā€“28ā€°; values relative to Vienna standard mean ocean water [VSMOW]). The extremely high oxygen isotope ratios uniquely identify the melt source as high-Ī“18O marine sediment (pelitic and/or siliciceous mud), as no other source could produce granite with such anomalously high Ī“18O. Formation of high-Ī“18O sediment-derived (S-type) granite within peridotite requires subduction of sediment to the mantle, where it melted and intruded overlying mantle wedge. The granite suite described here contains the highest oxygen isotope ratios reported for igneous rocks, yet intruded mantle peridotite below the Mohorovičić seismic discontinuity, the most primitive oxygen isotope reservoir in the silicate Earth. Identifying the presence and quantifying the extent of sediment melting within the mantle has important implications for understanding subduction recycling of supracrustal material and effects on mantle heterogeneity over time.National Geographi

    The Rho family GEF FARP2 is activated by aPKC iota to control tight junction formation and polarity

    Get PDF
    The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCĪ¹ and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a ā€˜RIPRā€™ motif-dependent partner and substrate of aPKCĪ¹ that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domainā€“kinase domain interaction and detachment promoted by aPKCĪ¹-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6ā€“aPKCĪ¹ complex. However, we show that aPKCĪ¹ acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCĪ¹āˆ’FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCĪ¹ and other Cdc42 effectors

    aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization

    Get PDF
    Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/Ī±B/Ī±C contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation

    Comparative Population Genetics of the Immunity Gene, Relish: Is Adaptive Evolution Idiosyncratic?

    Get PDF
    The frequency of adaptive evolution acting on common loci in distant lineages remains an outstanding question in evolutionary biology. We asked whether the immunity factor, Relish, a gene with a history of directional selection in Drosophila simulans, shows evidence of a similar selective history in other Drosophila species. We found only weak evidence of recurrent adaptive protein evolution at the Relish locus in three sister species pairs, suggesting that this key component of the insect immune system has an idiosyncratic evolutionary history in Drosophila

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloningā€“sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, Ī±- and Ī²-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change
    • ā€¦
    corecore