17 research outputs found

    Stability of planar flames as gasdynamic discontinuities

    No full text
    The stability of a steadily propagating planar premixed flame has been the subject of numerous studies since Darrieus and Landau showed that in their model flames are unstable to perturbations of any wavelength. Moreover, the instability was shown to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff of the instability. In addition to the Darrieus-Landau instability, which results from thermal expansion, analysis of the diffusional thermal model indicates that premixed flames may exhibit cellular and pulsating instabilities as a consequence of preferential diffusion. However, no previous theory captured all the instabilities including a high-wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified theory is proposed which, in appropriate limits and under appropriate assumptions, recovers all the relevant previous theories. It also includes additional new terms, not present in previous theories. In the present paper we consider the stability of a uniformly propagating planar flame as a solution of the unified model. The results are then compared to those based on the models of Darrieus-Landau, Sivashinsky and Matalon-Matkowsky. In particular, it is shown that the unified model is the only model to capture the Darrieus-Landau, cellular and pulsating instabilities including a high-wavenumber cutoff for each

    Interface conditions for fast-reaction fronts in wet porous mineral materials : the case of concrete carbonation

    No full text
    Reaction–diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based materials are discussed. Providing full control on the velocity of the reaction front, such conditions offer a rich description of the coupling between transport, reaction, and change in the shape of the a priori unknown time-dependent regions. New models are formulated and validated by means of numerical simulations and experimental data.cited By 6</p

    Exit event from a metastable state and Eyring-Kramers law for the overdamped Langevin dynamics

    Get PDF
    International audienceIn molecular dynamics, several algorithms have been designed over the past few years to accelerate the exit event from a metastable region of the configuration space. Some of them are based on the fact that the exit event from a metastable region is well approximated by a Markov jump process. In this work, we present recent results on the exit event from a metastable region for the overdamped Langevin dynamics obtained in [17, 18, 49]. These results aim in particular at justifying the use of a Markov jump process parametrized by the Eyring-Kramers law to model the exit event from a metastable region
    corecore