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Abstract. In molecular dynamics, several algorithms have been de-
signed over the past few years to accelerate the sampling of the exit
event from a metastable domain, that is to say the time spent and the
exit point from the domain. Some of them are based on the fact that the
exit event from a metastable region is well approximated by a Markov
jump process. In this work, we present recent results on the exit event
from a metastable region for the overdamped Langevin dynamics ob-
tained in [22,23,57]. These results aim in particular at justifying the use
of a Markov jump process parametrized by the Eyring-Kramers law to
model the exit event from a metastable region.

Keywords: Exit event, metastability, Eyring-Kramers and overdamped
Langevin.

The objective of this note is to give motivations (Section 1) and outlines of
the proofs (Section 2) of results recently obtained in [22, 23, 57]. These results
justify the use of the Eyring-Kramers formulas together with a kinetic Monte
Carlo model to model the exit event from a metastable state for the overdamped
Langevin dynamics. Such results are particularly useful to justify algorithms and
models which use such formulas to build reduced description of the overdamped
Langevin dynamics.

1 Exit event from a metastable domain and Markov

jump process

1.1 Overdamped Langevin dynamics and metastability

Let (Xt)t≥0 be the stochastic process solution to the overdamped Langevin dy-
namics in R

d:
dXt = −∇f(Xt)dt+

√
h dBt, (1)

where f ∈ C∞(Rd,R) is the potential function, h > 0 is the temperature
and (Bt)t≥0 is a standard d-dimensional Brownian motion. The overdamped
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Langevin dynamics can be used for instance to describe the motion of the atoms
of a molecule or the diffusion of impurities in a crystal (see for instance [52, Sec-
tions 2 and 3] or [10]). The term −∇f(Xt) in (1) sends the process towards local
minima of f , while thanks to the noise term

√
h dBt, the process Xt may jump

from one basin of attraction of the dynamics ẋ = −∇f(x) to another one. If
the temperature is small (i.e. h ≪ 1), the process (Xt)t≥0 remains during a very
long period of time trapped around a neighborhood of a local minimum of f ,
called a metastable state, before going to another region. For that reason, the
process (1) is said to be metastable. More precisely, a domain Ω ⊂ R

d is said to
be metastable for the probability measure µ supported in Ω if, when X0 ∼ µ, the
process (1) reaches a local equilibrium in Ω long before escaping from it. This
will be made more precise below using the notion of quasi-stationary distribution
(see Section 1.5). The move from one metastable region to another is typically
related to a macroscopic change of configuration of the system. Metastability
implies a separation of timescales which is one of the major issues when try-
ing to have access to the macroscopic evolution of the system using simulations
made at the microscopic level. Indeed, in practice, many transitions cannot be
observed by integrating directly the trajectories of the process (1). To overcome
this difficulty, some algorithms use the fact that the exit event from a metastable
region can be well approximated by a Markov jump process with transition rates
computed with the Eyring-Kramers formula, see for example the Temperature
Accelerated Dynamics method [62] that will be described below.

1.2 Markov jump process and Eyring-Kramers law

Kinetic Monte Carlo methods. Let Ω ⊂ R
d be a domain of the configuration

space and let us assume that the process (1) is initially distributed according to
the probability measure µ (i.e. X0 ∼ µ) which is supported in Ω and for which
the exit event fromΩ is metastable. Let us denote by (Ωi)i=1,...,n the surrounding
domains of Ω (see Figure 1), each of them corresponding to a macroscopic state
of the system. Many reduced models and algorithms rely on the fact that the
exit event from Ω, i.e. the next visited state by the process (1) among the Ωi’s
as well as the time spent by the process (1) in Ω, is efficiently approximated by
a Markov jump process using kinetic Monte Carlo methods [8, 25, 60, 61, 67, 68].
Kinetic Monte Carlo methods simulate a Markov jump process in a discrete state
space. To use a kinetic Monte Carlo algorithm in order to sample the exit event
from Ω, one needs for i ∈ {1, . . . , n} the transition rate ki to go from the state Ω
to the state Ωi. A kinetic Monte Carlo algorithm generates the next visited state
Y among the Ωi’s and the time T spent in Ω for the process (1) as follows:

1. First sample T as an exponential random variable with parameter
∑n

i=1 ki,
i.e.:

T ∼ E
( n∑

i=1

ki

)
. (2)

2. Then, sample the next visited state Y independently from T , i.e

Y |= T (3)
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using the following law : for all i ∈ {1, . . . , n},

P
[
Y = i

]
=

ki∑n
ℓ=1 kℓ

. (4)

Ω

x0

z4

Ω4

z2

Ω2

z1

Ω1

z3
Ω3

Fig. 1. Representation of the domain Ω, the surrounding domains (Ωi)i=1,...,4 of Ω,
the global minimum x0 of f in Ω and {zi} = argmin∂Ω∩Ωi

f (i ∈ {1, 2, 3, 4}).

Remark 1. Let us give an equivalent way to sample T and Y in a Monte Carlo
method. Let (τi)i∈{1,...,n} be n independent random variables such that for all
i ∈ {1, . . . , n}, τi is exponentially distributed with parameter ki. Then, the
couple (T, Y ) has the same law as (minj∈{1,...,n} τj , argminj∈{1,...,n}τj).

Eyring-Kramers law. In practice, the transition rates (ki)i∈{1,...,n} are com-
puted using the Eyring-Kramers formula [29, 67]:

ki = Ai e
− 2

h
(f(zi)−f(x0)), (5)

where x0 ∈ Ω is the unique global minimum of f inΩ and {zi} = argmin∂Ω∩∂Ωi
f ,

see Figure 1. We here assume for simplicity that the minimum is attained at one
single point zi but the results below can be generalized to more general settings.
If Ω is the basin of attraction of x0 for the dynamics ẋ = −∇f(x) so that zi is
a saddle point of f (i.e. a critical point of index 1), then, for the overdamped
Langevin dynamics (1), the prefactor Ai writes:

Ai =
|λ(zi)|

2π

√
det Hess f(x0)√
|det Hess f(zi)|

, (6)

where λ(zi) is the negative eigenvalue of the Hessian matrix of f at zi. Notice
that the formula (6) requires that x0 and zi are non degenerate critical points
of f . The formulas (5) and (6) have been first obtained in the small temperature
regime by Kramers [42] (see the review of the literature [29]).
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Remark 2. In the Physics literature, the approximation of the macroscopic evo-
lution of the system with a Markov jump process with transition rates computed
with the Eyring-Kramers formula (5)-(6) is sometimes called the Harmonic Tran-
sition State Theory [48, 64].

1.3 The temperature accelerated dynamics algorithm.

The temperature accelerated dynamics (TAD) algorithm proposed by M.R.
Sørensen and A.F Voter [62] aims at efficiently approximating the exit event
from a metastable domain for the dynamics (1) in order to have access to the
macroscopic evolution of the system. We also refer to [1] for a mathematical
analysis of this algorithm in a one-dimensional setting.

The basic idea of the TAD algorithm is the following: the exit time from the
metastable domain Ω increases exponentially with the inverse of the temper-
ature, see indeed (2)-(5). The idea is then to simulate the process at higher
temperature to accelerate the simulation of the exit event. Let us assume that
the process (Xt)t≥0, evolving at the temperature hlow is at some time t0 ≥ 0
in the domain Ω ⊂ R

d which is metastable for the initial condition Xt0 ∈ Ω.
Following [62], let us assume that the process instantaneously reaches the local
equilibrium in Ω, i.e. that Xt0 is distributed according to this local equilibrium.
The existence and the uniqueness of the local equilibrium in Ω as well as the con-
vergence toward this local equilibrium is made more precise in Section 1.5 using
the notion of quasi-stationary distribution. To ensure the convergence towards
the local equilibrium in Ω, a decorrelation step may be used before running the
TAD algorithm, see step (M1) in [1, Section 2.2].
As in the previous section, one denotes by (Ωi)i=1,...,n the surrounding domains
of Ω (see Figure 1), each of them corresponding to a macroscopic state of the
system and, for i ∈ {1, . . . , n}, {zi} = argmin∂Ω∩∂Ωi

f . To sample the next
visited state among the Ωi’s as well as the time T spent in Ω for the process (1),
the TAD algorithm proceeds as follows. Let us introduce Tsim = 0 (which is the
simulation time) and Tstop = +∞ (which is the stopping time), and iterate the
following steps.

1. Let (Yt)t≥Tsim
be the solution to the evolution equation (1) but for the

temperature hhigh > hlow, starting from the local equilibrium in Ω at tem-
perature hhigh. Let (Yt)t≥Tsim

evolve until it leaves Ω and denote by

Tsim + τ

the first exit time from Ω for the process (Yt)t≥Tsim
. Let j ∈ {1, . . . , n} be

such that YTsim+τ ∈ ∂Ωj ∩ ∂Ω. Then, set Tsim = Tsim + τ . If it is the first
time an exit from Ω through zj for the process (Yt)t≥0 is observed (else one
goes directly to the next step), set τj(hhigh) = Tsim and extrapolate the
time to τj(hlow) with the formula

τj(hlow) = τj(hhigh) e
2
(

1
hlow

− 1
hhigh

)
(f(zj)−f(x0))

, (7)
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where we recall x0 ∈ Ω is the unique global minimum of f in Ω. Then,
update the minimum exit time τmin(hlow) among the τj(hlow)’s which have
been observed so far. Finally, compute a new time Tstop so that there is a
very small probability (say α ≪ 1) to observe an exit event from Ω at the
temperature hhigh which, using (7), would change the value of τmin(hlow).
We refer to [62] or [1] for the computation of Tstop.

2. If Tsim ≤ Tstop then go back to the first step starting from the local equilib-
rium in Ω at time Tsim, else go to the next step.

3. Set T = τmin(hlow) and Y = ℓ where ℓ is such that τℓ(hlow) = τmin(hlow).
Finally, send Xt0+T to Ωℓ and evolve the process (1) with the new initial
condition Xt0+T .

Remark 3. In [62], when the process (Yt)t≥Tsim
leaves Ω, it is reflected back in Ω

and it is then assumed that it reaches instantaneously the local equilibrium in Ω
at temperature hhigh.

Remark 4. One can use a decorrelation step before running the TAD algorithm
and the sampling of YTsim

according to the local equilibrium in Ω at the begin-
ning of the step 1 to ensure that the underlying Markov jump process is justified,
see [1].

The extrapolation formula (7) which is at the heart of the TAD algorithm re-
lies on the properties of the underlying Markov jump process used to accelerate
the exit event from a metastable state and where transition times are exponen-
tially distributed with parameters computed with the Eyring-Kramers formula,
see Remark 1 and Equation (5). In the algorithm TAD, it is indeed assumed
that the exit event from Ω can be modeled with a kinetic Monte Carlo method
where the transition rates are computed with the Eyring-Kramers law (5)-(6).
Then, at high temperature, one checks that under this assumption, each τi(hhigh)

(i ∈ {1, . . . , n}) is an exponential law of parameter Ai e
− 2

hhigh
(f(zi)−f(x0))

(see
Remark 1). The formula (7) allows to construct for all i ∈ {1, . . . , n}, an exit

time τi(hlow) which is an exponential law of parameter Ai e
− 2

hlow
(f(zi)−f(x0))

. By
considering the couple (mini∈{1,...,n} τi(hlow), argmini∈{1,...,n}τi(hlow)), one has
access to the exit event from Ω (see Remark 1).

Remark 5. There are other algorithms which use the properties of the underly-
ing Markov jump process to accelerate the simulation of the exit event from a
metastable state, see for instance [65] and [66].

Our objective is to justify rigorously that a Markov jump process with transition
rates computed with the Eyring-Kramers formula (5) can be used to model the
exit event from a metastable domainΩ for the overdamped Langevin process (1).
Before, let us recall mathematical contributions on the exit event from a domain
and on the Eyring-Kramers formula (5).
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1.4 Mathematical literature on the exit event from a domain and
on the Eyring-Kramers formulas

In the mathematical literature, there are mainly two approaches to the study
of the asymptotic behaviour of the exit event from a domain when h → 0: the
global approaches and the local approaches.

Global approaches. The global approaches study the asymptotic behaviours
in the limit h → 0 of the eigenvalues of the infinitesimal generator

L
(0)
f,h = −h

2
∆+ ∇f · ∇ (8)

of the diffusion (1) on R
d. Let us give for example a result obtained in [6, 7].

To this end, let us assume that the potential f : Rd → R is a Morse function,
has m local minima {x1, . . . , xm} and that for h small enough

∫
Rd e

− 2
h

f < +∞.

Let us recall that φ : Rd → R is a Morse function if all its critical points are
non degenerate. For a Morse function φ : Rd → R, we say that x is a saddle
point of φ if x is a critical point of φ such that the Hessian matrix of φ at x
has exactly one negative eigenvalue (i.e. x is a critical point of φ of index 1).

Then, from [35], the operator L
(0)
f,h has exactly m exponentially small eigenvalues

{λ1, λ2, . . . , λm} when h → 0 with λ1 = 0 < λ2 ≤ . . . ≤ λm (i.e., when h → 0,
for all i ∈ {1, . . . ,m}, λi = O(e− c

h ) for some c > 0 independent of h). Moreover,
sharp asymptotic estimates can be derived for the eigenvalues {λ2, . . . , λm}.
In [6,7], the following results are obtained. Let us assume that {x1} = argmin

Rdf .
For k ∈ {2, . . . ,m} and Bk = {x ∈ {x1, . . . , xm} \ {xk}, f(x) ≤ f(xk)} (i.e.
Bk is the set of local minima of f which are lower in energy than xk), one
denotes by P(xk, Bk) the set of curves γ ∈ C0([0, 1],Rd) such that γ(0) = xk

and γ(1) ∈ Bk. Let us finally assume that:

1. For all k ∈ {2, . . . ,m}, there exists a unique saddle point zk (i.e. a critical
point of f of index 1) such that f(zk) = infγ∈P(xk,Bk) supt∈[0,1] f(γ(t)).

2. The values
(
f(zk) − f(xk)

)
k∈{2,...,m} are all distinct.

These assumptions imply that the map xk ∈ {x2, . . . , xm} 7→ zk is injective. The
set {x2, . . . , xm} is then labeled such that the sequence

(
f(zk)−f(xk)

)
k∈{2,...,m}

is strictly decreasing. The previous assumptions also imply the existence of a
cascade of events, which occur with different timescales, to go from one local
minimum xk of f to the global minimum x1 of f in R

d, see for instance Figure 2.
Then, one has for k ∈ {2, . . . ,m}, in the limit h → 0:

λk =
|λ(zk)|

2π

√
det Hessf(xk)

|
√

det Hessf(zk)|
e− 2

h
(f(zk)−f(xk))(1 + o(1)), (9)

where λ(zk) is the negative eigenvalue of the Hessian matrix of f at zk. In the
articles [6, 7], using a potential-theoretic approach, the sharp equivalent (9) is
obtained and each of the eigenvalues λk (for k ∈ {2, . . . ,m}) is shown to be the
inverse of the average time it takes for the process (1) to go from xk to Bk. We



Metastability and Eyring-Kramers law 7

also refer to [24] for similar results. In [30], another proof of (9) is given using
tools from semi-classical analysis. Let us also mention [54] for a generalization
of the results obtained in [30]. Notice that the results presented above do not
provide any information concerning the average time it takes for the process (1)
to go from the global minimum of f to a local minimum of f when h → 0. One
also refers to [44] for generalization of [6,7] for a class of non reversible processes
when f has two local minima, and to [11–13,37, 55] for related results.

x1

x2

x3

z2

z3

x1

x2

x3

z3

z2

Fig. 2. Examples of two labelings of the local minima {x1, x2, x3} of f in dimension
one.

Remark 6. The global approaches have been used in [60, 61] to construct a

Markovian dynamics by projecting the infinitesimal generator L
(0)
f,h of the diffu-

sion (1) with a Galerkin method onto the vector space associated with the m
small eigenvalues {λ1, . . . , λm}. This projection leads to a very good approxima-

tion of L
(0)
f,h in the limit h → 0. The question is then how to relate the transition

events (or the trajectories) of the obtained Markov process to the exit events (or
the trajectories) of the original one.
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Local approaches. The local approaches consist in studying the asymptotic
behaviour when h → 0 of the exit event (τΩ, XτΩ

) from a domain Ω ⊂ R
d, where

τΩ := inf{t ≥ 0, Xt /∈ Ω}.

One of the most well-known approaches is the large deviation theory developed
by Freidlin and Wentzell in the 1970s. We refer to the book [26] which summarizes
their main contributions. This theory is based on the study of small pieces of
the trajectories of the process defined with a suitable increasing sequence of
stopping times. The rate function is fundamental in this theory: it quantifies
the cost of deviating from a deterministic trajectory when h → 0. The rate
functional was first introduced by Schilder [59] for a Brownian motion. Some
typical results from [26] (see Theorem 2.1, Theorem 4.1, and Theorem 5.1 there)
are the following. Let Ω be a C∞ open and connected bounded subset of R

d.
Let us assume that ∂nf > 0 on ∂Ω (where ∂n is the outward normal derivative
to Ω) and that f has a unique non degenerate critical point x0 in Ω such that
f(x0) = minΩ f . Then, for all x ∈ Ω:

lim
h→0

h lnEx

[
τΩ

]
= 2
(

inf
∂Ω

f − f(x0)
)
.

The notation Ex stands for the expectation given the fact thatX0 = x. Moreover,
let x ∈ Ω such that f(x) < inf∂Ω f . Then, for any γ > 0 and δ0 > 0, there
exist δ ∈ (0, δ0] and h0 > 0 such that for all h ∈ (0, h0) and for all y ∈ ∂Ω:

e− 2
h

(f(y)−inf∂Ω f)e− γ
h ≤ Px

[
|XτΩ

− y| < δ
]

≤ e− 2
h

(f(y)−inf∂Ω f)e
γ
h .

The notation Px stands for the probability given the fact that X0 = x. Lastly,
if the infimum of f on ∂Ω is attained at one single point y0 ∈ ∂Ω, then for all
δ > 0:

lim
h→0

Px

[
|XτΩ

− y0| < δ
]

= 1.

A result due to Day [14] (see also [49, 50]) concerning the law of τΩ is the
following. When h → 0, the exit time τΩ converges in law to an exponentially
distributed random variable and for all x ∈ Ω

lim
h→0

λhEx

[
τΩ

]
= 1,

where λh is the principal eigenvalue of the infinitesimal generator of the diffu-
sion (1) associated with Dirichlet boundary conditions on ∂Ω (see Proposition 2
below). The interest of this approach is that it can be applied to very general
dynamics. However, when it is used to prove that the Eyring-Kramers formu-
las (5) can be used to study the exit distribution from Ω, it only provides the
exponential rates (not the prefactor Ai in (5)) and does not give error bounds
when h → 0.

There are also approaches which are based on techniques developed for partial
differential equations. In [51, 52], using formal computations, when ∂nf > 0
on ∂Ω and f has a unique non degenerate critical point x0 in Ω such that
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f(x0) = minΩ f , the following formula is derived: for any F ∈ C∞(∂Ω,R) and
x ∈ Ω, one has when h → 0:

Ex

[
F
(
XτΩ

)]
=

∫
∂Ω

F (z)∂nf(z) e− 2
h

f(z) dz
∫

∂Ω
∂nf e− 2

h
fdσ

+ o(1). (10)

The formal asymptotic estimate (10) implies that the law of XτΩ
concentrates on

points where f attains its minimum on ∂Ω. Moreover, an asymptotic equivalent
of Ex

[
τΩ

]
when h → 0 is also formulated in [56] through formal computations.

These results are obtained injecting formal asymptotic expansions in powers
of h in the partial differential equations satisfied by x ∈ Ω 7→ Ex

[
F
(
XτΩ

)]

and x ∈ Ω 7→ Ex

[
τΩ

]
. We also refer to [52], where using formal computations,

asymptotic formulas are obtained concerning both the concentration of the law
of XτΩ

on argmin∂Ωf and Ex

[
τΩ

]
when Ω is the union of basins of attraction of

the dynamics d
dtγ(t) = −∇f(γ(t)). When ∂nf > 0 on ∂Ω and f has a unique non

degenerate critical point x0 in Ω such that f(x0) = minΩ f , the formula (10) is
proved rigorously by Kamin in [40], and is extended to a non reversible diffusion
process (Yt)t≥0 solution to dYt = b(Yt) dt +

√
hdBt in [15, 16, 39, 58] when Ω

contains one attractor of the dynamics d
dtγ(t) = b(γ(t)) and b(x) · n < 0 for

all x ∈ ∂Ω. However, the results [15,16,39,40,58] do not provide any information
on the probability to leave Ω through a point which is not a global minimum
of f on ∂Ω.

Finally, let us mention [20, 21, 31, 37, 46, 49, 50] for a study of the asymptotic
behaviour in the limit h → 0 of λh and uh (see Proposition 2 below). The reader
can also refer to [19] for a review of the different techniques used to study the
asymptotic behaviour of XτΩ

when h → 0 and to [2] for a review of the different
techniques used to study the asymptotic behaviour of τΩ when h → 0.

Remark 7. Some authors proved the convergence to a Markov jump process in
some specific geometric settings and after a rescaling in time. We refer to [41]
for a one-dimensional diffusion in a double well and [27,50] for a study in higher
dimension. In [63], assuming that all the saddle points of f are at the same
height, it is proved that a suitable rescaling of the time leads to a convergence
of the diffusion process to a Markov jump process between the global minima
of f .

The results presented in this work (see [22, 23]) follow a local approach. The
quasi-stationary distribution of the process (1) on Ω is the cornerstone of the
analysis. They state that, under some geometric assumptions, the Eyring-Kramers
formulas (with prefactors) can be used to model the exit event from a metastable
state, and provide explicit error bounds.

1.5 Quasi-stationary distribution and transition rates

Local equilibrium. Let Ω be a C∞ open bounded connected subset of Rd and
f ∈ C∞(Ω,R). Let us recall that τΩ := inf{t ≥ 0, Xt /∈ Ω} denotes the first
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exit time from Ω. The quasi-stationary distribution of the process (1) on Ω is
defined as follows.

Definition 1. A probability measure νh on Ω is a quasi-stationary distribution
of the process (1) on Ω if for all t > 0 and any measurable set A ⊂ Ω,

Pνh

[
Xt ∈ A

∣∣t < τΩ

]
= νh(A).

The notation Pµ stands for the probability given the fact that the process (1)
is initially distributed according to µ i.e. X0 ∼ µ. The next proposition [9, 45]
shows that the law of the process (1) at time t conditioned not to leave Ω on
the interval (0, t) converges to the quasi-stationary distribution.

Proposition 1. Let Ω be a C∞ open connected and bounded subset of R
d and

f ∈ C∞(Ω,R). Then, there exist a unique probability measure νh on Ω and c > 0
such that for any probability measure µ on Ω, there exist C(µ) > 0 and t(µ) > 0
such that for all t ≥ t(µ) and all measurable set A ⊂ Ω:

∣∣Pµ

[
Xt ∈ A

∣∣t < τΩ

]
− νh(A)

∣∣ ≤ C(µ)e−ct. (11)

Moreover, νh is the unique quasi-stationary distribution of the process (1) on Ω.

Proposition 1 indicates that the quasi-stationary distribution νh can be seen as
a local equilibrium of the process (1) in Ω.

The quasi-stationary distribution νh can be expressed with the principal eigen-

function of the infinitesimal generator L
(0)
f,h (see (8)) of the diffusion (1) associ-

ated with Dirichlet boundary conditions on ∂Ω. To this end, let us introduce
the following Hilbert spaces L2

w(Ω) =
{
u : Ω → R,

∫
Ω u2e− 2

h
f < ∞

}
and for

q ∈ {1, 2},

Hq
w(Ω) =

{
u ∈ L2

w(Ω), ∀α ∈ N
d, |α| ≤ q, ∂αu ∈ L2

w(Ω)
}
. (12)

The subscript w in the notation L2
w(Ω) and Hq

w(Ω) refers to the fact that the
weight function x ∈ Ω 7→ e− 2

h
f(x) appears in the inner product. Moreover, let

us denote by H1
0,w(Ω) = {u ∈ H1

w(Ω), u = 0 on ∂Ω}. Let us recall the following
result [45].

Proposition 2. Let Ω be a C∞ open connected and bounded subset of Rd and f ∈
C∞(Ω,R). Then, the operator L

(0)
f,h with domain H1

0,w(Ω) ∩ H2
w(Ω) on L2

w(Ω),

which is denoted by L
D,(0)
f,h , is self-adjoint, positive and has compact resolvent.

Furthermore, the smallest eigenvalue λh of L
D,(0)
f,h is non degenerate and any

eigenfunction associated with λh has a sign on Ω.

In the following, one denotes by uh an eigenfunction associated with λh. The

smallest eigenvalue λh of L
D,(0)
f,h is called the principal eigenvalue of L

D,(0)
f,h and uh

a principal eigenfunction of L
D,(0)
f,h . Without loss of generality, one assumes that

uh > 0 on Ω and

∫

Ω

u2
h e

− 2
h

f = 1. (13)
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Then, the quasi-stationary distribution νh of the process (1) in Ω is given by
(see [45]):

νh(dx) =
uh(x) e− 2

h
f(x)

∫
Ω
uh e− 2

h
f

dx. (14)

Moreover, the following result shows that when X0 ∼ νh, the law of the exit
event (τΩ , XτΩ

) is explicitly known in terms of λh and uh (see [45]).

Proposition 3. Let us assume that X0 ∼ νh, where νh is the quasi-stationary
distribution of the process (1) in Ω. Then, τΩ and XτΩ

are independent. More-
over, τΩ is exponentially distributed with parameter λh and for any open set Σ ⊂
∂Ω, one has:

Pνh

[
XτΩ

∈ Σ
]

= − h

2λh

∫

Σ

∂nuh(z)e− 2
h

f(z)σ(dz)
∫

Ω

uhe
− 2

h
f

, (15)

where σ(dz) is the Lebesgue measure on ∂Ω.

Approximation of the exit event with a Markov jump process. Let us
now provide justifications to the use of a Markov jump process with transition
rates computed with the Eyring-Kramers formula (5) to model the exit event
from a metastable domain Ω. In view of (11), one can be more precise on the
definition of the metastability of a domain Ω given in Section 1.1. For a proba-
bility measure µ supported in Ω, the domain Ω is said to be metastable if, when
X0 ∼ µ, the convergence to the quasi-stationary distribution νh in (1) is much
quicker than the exit from Ω. Since the process (1) is a Markov process, it is
then relevant to study the exit event from Ω starting from the quasi-stationary
distribution νh, i.e. X0 ∼ νh. As a consequence of Proposition 3, the exit time
is exponentially distributed and is independent of the next visited state. These
two properties are the fundamental features of kinetic Monte Carlo methods,
see indeed (2) and (3). It thus remains to prove that the transition rates can
be computed with the Eyring-Kramers formula (5). For that purpose, let us
first give an expression of the transition rates. Recall that (Ωi)i=1,...,n denotes
the surrounding domains of Ω (see Figure 1). For i ∈ {1, . . . , n}, we define the
transition rate to go from Ω to Ωi as follows:

kL
i :=

1

Eνh

[
τΩ

]Pνh

[
XτΩ

∈ ∂Ω ∩ ∂Ωi

]
, (16)

where we recall, νh is the quasi-stationary distribution of the process (1) in Ω.
The superscript L in (16) indicates that the microscopic evolution of the sys-
tem is governed by the overdamped Langevin process (1). Notice that, using
Proposition 3, it holds for all i ∈ {1, . . . , n}:

Pνh

[
XτΩ

∈ ∂Ω ∩ ∂Ωi

]
=

kL
i∑n

ℓ=1 k
L
ℓ

.
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Thus, the expressions (16) are compatible with the use of a kinetic Monte Carlo
algorithm, see (2) and (4). Indeed, starting from the quasi-stationary distribu-
tion νh, the exit event from Ω can be exactly modeled using the rates (16): the
exit time is exponentially distributed with parameter

∑n
ℓ=1 k

L
ℓ , independent of

the exit point, and the exit point is in ∂Ωi ∩ ∂Ω with probability kL
i /
∑n

ℓ=1 k
L
ℓ .

The remaining question is thus following: does the transition rate (16) satisfy
the Eyring-Kramers law (5) in the limit h → 0?

Notice that, using Proposition 3, for i ∈ {1, . . . , n}, the transition rate defined
by (16) writes:

kL
i = −h

2

∫

∂Ω∩∂Ωi

∂nuh(z) e− 2
h

f(z)σ(dz)

∫

Ω

uh e
− 2

h
f

, (17)

where we recall, uh is the eigenfunction associated with the principal eigen-

value λh of L
D,(0)
f,h .

The remainder of this work is dedicated to the presentation of recent results
in [23], [22] and [57] which aim at studying the asymptotic behaviour of the
exit event (τΩ , XτΩ

) from a metastable domain Ω in the limit h → 0. In par-
ticular, the results give a sharp asymptotic formula of the transition rates (17)
when h → 0.

Remark 8. If one wants to recover the expression of the prefactor (6), one has
to multiply by 1

2 the expression (16). This can be explained as follows. Once the
process (1) reaches ∂Ω∩∂Ωi, it has, in the limit h → 0, a one-half probability to
come back in Ω and a one-half probability to go in Ωi. If zi is a non degenerate
saddle point of f , this result is not difficult to prove in dimension 1. Indeed, it
is proved in [57, Section A.1.2.2], that when reaching ∂Ω ∩ ∂Ωi, the probability
that the process (1) goes in Ωi is 1

2 + O(h) in the limit h → 0. To extend this
result to higher dimensions, one can use a suitable set of coordinates around zi.

2 Main results on the exit event

In all this section, Ω ⊂ R
d is C∞ open, bounded and connected, and f ∈

C∞(Ω,R) 3. The purpose of this section is to present recent results obtained
in [22] and [23]. Both [22] and [23] are mainly concerned with studying the
asymptotic behaviour when h → 0 of the exit law of a domain Ω of the pro-
cess (1). In [22], when Ω only contains one local minimum of f and ∂nf > 0
on ∂Ω, we obtain sharp asymptotic equivalents when h → 0 of the probabil-
ity that the process (1) leaves Ω through a subset Σ of ∂Ω starting from the
quasi-stationary distribution or from a deterministic initial condition in Ω. Then,
these asymptotic equivalents are used to compute the asymptotic behaviour of

3 Actually, all the results presented in this section are proved in [22] and [23] in the
more general setting: Ω = Ω ∪ ∂Ω is a C∞ oriented compact and connected Rie-
mannian manifold of dimension d with boundary ∂Ω.
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the transition rates (16). In [23], we explicit a more general setting than the one
considered in [22] where we identify the most probable places of exit of Ω as well
as their relative probabilities starting from the quasi-stationary distribution or
deterministic initial conditions in Ω. More precisely, we consider in [23] the case
when Ω contains several local minima of f and |∇f | 6= 0 on ∂Ω.

2.1 Sharp asymptotic estimates on the exit event from a domain

In this section, we present the results of [22] which give sharp asymptotic esti-
mates on the law of XτΩ

and on the expectation of τΩ when h → 0. These results
give in particular the asymptotic estimates of the transition rates (kL

j )j=1,...,n

defined in (16).

Geometric setting. Let us give the geometric setting which is considered in
this section:

– [H1] The function f : Ω → R and the restriction of f to Ω, denoted by f |∂Ω,
are Morse functions. Moreover, |∇f |(x) 6= 0 for all x ∈ ∂Ω.

– [H2] The function f has a unique global minimum x0 in Ω and

min
∂Ω

f > min
Ω

f = min
Ω

f = f(x0).

The point x0 is the unique critical point of f in Ω. The function f |∂Ω has
exactly n ≥ 1 local minima which are denoted by (zi)i=1,...,n. They are
ordered such that

f(z1) ≤ . . . ≤ f(zn).

– [H3] ∂nf(x) > 0 for all x ∈ ∂Ω.

Under the assumption [H2], one denotes by n0 ∈ {1, . . . , n} the number of
global minima of f |∂Ω, i.e.:

f(z1) = . . . = f(zn0) < f(znn0+1 ) ≤ . . . ≤ f(zn).

On Figure 3, one gives a schematic representation in dimension 2 of a function f
satisfying the assumptions [H1], [H2], and [H3], and of its restriction to ∂Ω,
in the case n = 4 and n0 = 2.

Remark 9. The assumption [H1] implies that f does not have any saddle point
(i.e. critical point of index 1) on ∂Ω. Actually, under [H1], [H2], and [H3], the
points (zi)i=1,...,n play geometrically the role of saddle points and are called gen-
eralized saddle points of f on ∂Ω, see [31, Section 5.2]. This can be explained by
the fact that, under [H1], [H2], [H3] and when f is extended by −∞ outside Ω,
the points (zi)i=1,...,n are geometrically saddle points of f (the extension of f by

−∞ is consistent with the Dirichlet boundary conditions used to define L
D,(0)
f,h )

in the following sense. For all i ∈ {1, . . . , n}, zi is a local minimum of f |∂Ω and
a local maximum of f |Di

, where Di is the straight line passing through zi and
orthogonal to ∂Ω at zi.
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level sets of f
Ω

z4

x0

z2

z1

z3

∂Ω

f |∂Ω

z4

z3

z1 z2

Bz1 Bz2 Bz3 Bz4

Fig. 3. Schematic representation in dimension 2 of a function f satisfying the assump-
tions [H1], [H2], and [H3], and of its restriction f |∂Ω to ∂Ω. On the figure, n = 4
and n0 = 2.

Remark 10. Notice that under [H1], [H2], and [H3], extending f by reflection
outside Ω in a neighborhood of zi also implies that zi is a geometric saddle
point of f as defined in Remark 9. In dimension one, such a construction was
considered by Kramers in [43] to derive formulas for transition rates, as explained
in [53]. Moreover, as in Remark 8, it can be proved in dimension 1 (exactly as
in [57, Section A.1.2.2]), that when reaching ∂Ω ∩ ∂Ωi, the probability that the
process (1) goes in Ωi is 1

2 + O(h) when h → 0. To extend this result to higher
dimensions, one can use a suitable set of coordinates around zi.

Let us now define g : Ω → R
+ by

g(x) =
∣∣∇f(x)

∣∣ when x ∈ Ω and g(x) =
∣∣∇T f(x)

∣∣ when x ∈ ∂Ω, (18)

where ∇T f is the tangential gradient of f in ∂Ω. Let us recall that for x ∈ ∂Ω,
∇T f(x) is defined by ∇T f(x) = ∇f(x) − (∇f(x) · n)n, where n is the unit
outward normal to ∂Ω at x. The assumptions one needs to state the results in
this section depend on the Agmon distance in Ω between the points (zi)i=1,...,n.
The Agmon distance is defined as follows: for any x ∈ Ω and y ∈ Ω,

da(x, y) := inf
γ∈Lip(x,y)

L(γ, (0, 1)), (19)
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where Lip(x, y) is the set of Lipschitz curves γ : [0, 1] → Ω which are such that
γ(0) = x and γ(1) = y, and where for γ ∈ Lip(x, y),

L(γ, (0, 1)) =

∫ 1

0

g(γ(t))|γ′(t)|dt.

Remark 11. Let us give some common points and differences between the quasipo-
tential V introduced in [26, Section 2] and the Agmon distance (19). Contrary
to the quasipotential V , the Agmon distance (19) is symmetric. Moreover, let
us consider x 6= y ∈ Ω such that there exists a curve γ : [0, 1] → Ω with
d
dtγ(t) = −∇f(γ(t)), γ(0) = x and γ(1) = y. Then, the Agmon distance (19)
between x and y equals f(x) − f(y) = V (y, x) > 0 but V (x, y) = 0 6= da(x, y).

Finally, let us define the following sets. For i ∈ {1, . . . , n}, Bzi
is the basin of

attraction of zi for the dynamics d
dtx(t) = −∇T f

(
x(t)

)
in ∂Ω, i.e. Bzi

= {y ∈
∂Ω, limt→∞ x(t) = zi if x(0) = y} (see for instance Figure 3). Moreover, one
defines for i ∈ {1, . . . , n}:

Bc
zi

:= ∂Ω \Bzi
.

Main results. Let us now give the main results of this section.

Proposition 4. Let uh be the eigenfunction associated with the principal eigen-

value λh of L
D,(0)
f,h which satisfies normalization (13). Let us assume that the

hypotheses [H1], [H2], [H3] are satisfied. Then, in the limit h → 0, one has:

λh =

√
det Hessf(x0)√

πh

n0∑

i=1

∂nf(zi)√
det Hessf |∂Ω(zi)

e− 2
h

(f(z1)−f(x0)) (1 +O(h))

(20)
and

∫

Ω

uh(x) e− 2
h

f(x)dx =
π

d
4

(det Hessf(x0))
1/4

h
d
4 e− 1

h
f(x0)(1 +O(h)). (21)

Furthermore, one obtains the following theorem on the asymptotic behaviour
of ∂nuh, which is one of the main results of [22].

Theorem 1. Let us assume that [H1], [H2], and [H3] are satisfied and that
the following inequalities hold:

f(z1) − f(x0) > f(zn) − f(z1) (22)

and for all i ∈ {1, . . . , n},

da(zi, B
c
zi

) > max[f(zn) − f(zi), f(zi) − f(z1)]. (23)

Let i ∈ {1, . . . , n} and Σi ⊂ ∂Ω be an open set containing zi and such that
Σi ⊂ Bzi

. Let uh be the eigenfunction associated with the principal eigenvalue

of L
D,(0)
f,h which satisfies (13). Then, in the limit h → 0:

∫

Σi

∂nuh e
− 2

h
f = Ci(h) e− 2f(zi)−f(x0)

h (1 +O(h)) , (24)
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where Ci(h) = − (det Hessf(x0))1/4∂nf(zi)2π
d−2

4√
det Hessf |∂Ω(zi)

h
d−6

4 .

These results have the following consequences.

Corollary 1. Let us assume that all the assumptions of Theorem 1 are satisfied.
Let i ∈ {1, . . . , n} and Σi ⊂ ∂Ω be an open set containing zi and such that
Σi ⊂ Bzi

. Then, in the limit h → 0:

Pνh
[XτΩ

∈ Σi] =
∂nf(zi)√

det Hessf |∂Ω(zi)

(
n0∑

k=1

∂nf(zk)√
det Hessf |∂Ω(zk)

)−1

× e− 2
h

(f(zi)−f(z1))(1 +O(h)), (25)

where νh is the quasi-stationary distribution of the process (1) in Ω (see (14)).
Moreover, if Σi is the common boundary between the state Ω and a state Ωi,
then, when h → 0

kL
i =

1√
πh
∂nf(zi)

√
det Hessf(x0)√

det Hessf |∂Ω(zi)
e− 2

h
(f(zi)−f(x0))(1 + O(h)), (26)

where kL
i is the transition rate (16) to go from Ω to Ωi.

Notice that since zi is not a saddle point of f , the prefactor in (26) is not the
prefactor 1

2Ai (see Remark 10 for the explanation of the multiplicative term 1
2 ),

where Ai is defined by (6), but it is actually the expected prefactor for a gener-
alized saddle point of f (see Remarks 9 and 10).

The asymptotic estimate (25) is a consequence of Proposition 4, Theorem 1
together with (15), and (26) is a consequence of Proposition 4, Theorem 1
and (17). The main difficulty is to prove (24) which requires a sharp equiva-
lent of the quantity

∫
Σi
∂nuh e

− 2
h

f when zi is not a global minimum of f on ∂Ω,

i.e. when i ∈ {n0 + 1, . . . , n}.
In [22], numerical simulations are provided to check that (25) holds and to dis-
cuss the necessity of the assumptions (23) to obtain (25). Furthermore, in [22],
the results (24) and (25) are generalized to sets Σ ⊂ ∂Ω which do not nec-
essarily contain a point z ∈ {z1, . . . , zn}: this is the other main results of [22]
which is not presented here. Moreover, with the help of “leveling” results on the
function x 7→ Ex[F (XτΩ

)], we generalized (25) to deterministic initial conditions
in Ω (i.e. when X0 = x ∈ Ω) which are the initial conditions considered in the
theory of large deviations [26].
The proofs of Proposition 4 and Theorem 1 are based on tools from semi-classical
analysis and more precisely, they are based on techniques developed in [31–35,46].

Starting points of the proofs of Proposition 4 and Theorem 1. Let us
recall that uh is the eigenfunction associated with the principal eigenvalue λh

of L
D,(0)
f,h which satisfies normalization (13). In view of (15) and in order to

obtain (25), one wants to study the asymptotic behaviour when h → 0 of ∇uh
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on ∂Ω. The starting point of the proofs of Proposition 4 and Theorem 1 is the
fact that ∇uh is solution to an eigenvalue problem for the same eigenvalue λh.

Indeed, recall that uh is solution to L
(0)
f,h uh = λhuh in Ω and uh = 0 on ∂Ω. If

one differentiates this relation, ∇uh is solution to






L
(1)
f,h∇uh = λh∇uh in Ω,

∇Tuh = 0 on ∂Ω,
(

−h

2
div + ∇f ·

)
∇uh = 0 on ∂Ω,

(27)

where L
(1)
f,h = − h

2∆+ ∇f · ∇ + Hess f is an operator acting on 1-forms (namely

on vector fields). In the following the operator L
(1)
f,h with tangential boundary

conditions (27) is denoted by L
D,(1)
f,h . From (27), ∇uh is therefore an eigenform

of L
D,(1)
f,h associated with λh. For p ∈ {0, 1}, let us denote, by π

(p)
h the orthogonal

projector of L
D,(p)
f,h associated with the eigenvalues of L

D,(p)
f,h smaller than

√
h

2 .
Another crucial ingredient for the proofs of Proposition 4 and Theorem 1 is the
fact that, from [31, Chapter 3],

Ranπ
(0)
h = Spanuh and dim Ranπ

(1)
h = n. (28)

Therefore, from (27), it holds

∇uh ∈ Ranπ
(1)
h , (29)

and from (13) and the fact that 〈L(0)
f,h uh, uh〉L2

w
= h

2 ‖∇uh‖2
L2

w
, one has

λh =
h

2
‖∇uh‖2

L2
w
. (30)

Thus, to study the asymptotic behaviour when h → 0 of λh, uh and ∇uh, we

construct a suitable orthonormal basis of Ranπ
(1)
h . This basis is constructed

using so-called quasi-modes.

Sketch of the proofs of Proposition 4 and Theorem 1. Let us give the
sketch of the proof of (25) which is the main result of [22]. Recall that from
Proposition 2, one works in the Hilbert space L2

w(Ω). The spaces L2
w(Ω) and

H1
w(Ω) (see (12)) extend naturally on 1-forms as follows

Λ1L2
w(Ω) :=

{
u = t(u1, . . . , ud) : Ω → R

d, ∀k ∈ {1, . . . , d},
∫

Ω

u2
ke

− 2
h

f < ∞
}
,

and

Λ1H1
w(Ω) :=

{
u = t(u1, . . . , ud) : Ω → R

d, ∀(i, k) ∈ {1, . . . , d}2, ∂iuk ∈ L2
w(Ω)

}
.
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In the following, one denotes by ‖.‖L2
w

(resp. ‖.‖H1
w

) the norm of L2
w(Ω) and of

Λ1L2
w(Ω) (resp.H1

w(Ω) and Λ1H1
w(Ω)). Finally, 〈., .〉L2

w
stands for both the scalar

product associated with the norm of L2
w(Ω) and with the norm of Λ1L2

w(Ω). In

view of (29) and (28), one has for all orthonormal basis (ψj)j∈{1,...,n} of Ranπ
(1)
h ,

in L2
w(Ω):

∇uh =

n∑

j=1

〈∇uh, ψj〉L2
w
ψj , (31)

and from (30), it holds

λh =
h

2

n∑

j=1

∣∣〈∇uh, ψj〉L2
w

∣∣2. (32)

In particular, one has for all k ∈ {1, . . . , n},

∫

Σk

∂nuh e
− 2

h
f =

n∑

j=1

〈∇uh, ψj〉L2
w

∫

Σk

ψj · n e− 2
h

f , (33)

where we recall that Σk is an open set of ∂Ω such that zk ∈ Σk and Σk ⊂ Bzk
.

Step 1: approximation of uh. Under [H1], [H2], and [H3], it is not difficult to
find a good approximation of uh. Indeed, let us consider,

ũ :=
χ

‖χ‖L2
w

, (34)

where χ ∈ C∞
c (Ω,R+) and χ = 1 on {x ∈ Ω, d(x, ∂Ω) ≥ ε} where ε > 0.

In particular, for ε small enough, χ = 1 in a neighboorhood of x0 (which is
assumed in the following). Let us explain why ũ is a good approximation of uh.

Since L
D,(0)
f,h is self adjoint on L2

w(Ω), one has

∥∥(1 − π
(0)
h )ũ

∥∥2

L2
w

≤ C√
h

〈
L

D,(0)
f,h ũ, ũ

〉
L2

w

=
Ch

2
√
h

∫
Ω |∇χ|2e− 2

h
f

∫
Ω χ2e− 2

h
f

.

Since f(x0) = minΩ f < min∂Ω f and x0 is the unique global minimum of f on
Ω (see [H2]), one has using Laplace’s method (x0 is a non degenerate critical
point of f and χ(x0) = 1):

∫

Ω

χ2e− 2
h

f =
(πh)

d
2

√
detHessf(x0)

e− 2
h

f(x0)(1 +O(h)).

Therefore, for any δ > 0, choosing ε small enough, it holds when h → 0:

∥∥(1 − π
(0)
h )ũ

∥∥2

L2
w

= O(e− 2
h

(f(z1)−f(x0)−δ)),

and thus:
π

(0)
h ũ = ũ+O(e− 1

h
(f(z1)−f(x0)−δ)) in L2

w(Ω).
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From (28) and since χ ≥ 0, one has for any δ > 0 (choosing ε small enough),
when h → 0

uh =
π

(0)
h ũ

‖π(0)
h ũ‖L2

w

= ũ +O(e− 1
h

(f(z1)−f(x0)−δ)) in L2
w(Ω). (35)

Since ‖ũ‖L2
w

= 1, this last relation justifies that ũ is a good approximation of uh

in L2
w(Ω). Notice that (35) implies (21).

Step 2: construction of a basis of Ranπ
(1)
h to prove Theorem 1. In view of (33),

the idea is to construct a family of 1-forms (ψ̃j)j∈{1,...,n} which forms, when

projected on Ranπ
(1)
h , a basis of Ranπ

(1)
h and which allows to obtain sharp

asymptotic estimates on ∂nuh on all the Σj ’s when h → 0. In the literature,

such a 1-form ψ̃j is called a quasi-mode (for L
D,(1)
f,h ). A quasi-mode for L

D,(1)
f,h is

a smooth 1-form w such that for some norm, it holds when h → 0:

π
(1)
h w = w + o(1), (36)

To prove Theorem 1, one of the major issues is the construction of a ba-
sis (ψ̃j)j∈{1,...,n} so that the remainder term o(1) in (36), when w = ψ̃k, is
of the order (see (23))

∥∥(1 − π
(1)
h )ψ̃k

∥∥
H1

w

= O
(
e− 1

h
max[f(zn)−f(zk), f(zk)−f(z1)]

)
. (37)

This implies that
(
π

(1)
h ψ̃j

)
j∈{1,...,n} is a basis of Ranπ

(1)
h and above all, after

a Gram-Schmidt procedure on
(
π

(1)
h ψ̃j

)
j∈{1,...,n}, when h → 0, that for all k ∈

{1, . . . , n} (see (33)):

∫

Σk

∂nuh e
− 2

h
f =

n∑

j=1

〈∇ũ, ψ̃j〉L2
w

∫

Σk

ψ̃j · n e− 2
h

f +O
(
e− 2f(zk)−f(x0)+c

h

)
(38)

and (see (32))

λh =
h

2

n∑

j=1

|〈∇ũ, ψ̃j〉L2
w

|2 +O
(
e− 2

h
(f(z1)−f(x0)+c)

)
(39)

for some c > 0 independent of h. Here, we recall, ũ (see (34)) is a good ap-
proximation of uh (see (35)). Let us now explain how we will construct the

family
(
ψ̃j

)
j∈{1,...,n}in order to obtain (38) and (39). Then, we explain how the

terms
( ∫

Σj

ψ̃j · n e− 2
h

f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
appearing in (38)

and (39) are computed.

Step 2a: construction of the family (ψ̃j)j∈{1,...,n}. To construct each 1-form ψ̃j ,

the idea is to construct an operator L
(1)
f,h with mixed tangential Dirichlet and
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Neumann boundary conditions on a domain Ω̇j ⊂ Ω which is such that(
{z1, . . . , zn} ∪ {x0}

)
∩ Ω̇j = {zj}. For j ∈ {1, . . . , n}, ψ̃j is said to be asso-

ciated with the generalized saddle point zj. The goal of the boundary conditions
is to ensure that when h → 0, each of these operators has only one exponentially
small eigenvalue (i.e. this eigenvalue is O

(
e− c

h

)
for some c > 0 independent of

h), the other eigenvalues being larger than
√
h. Then, we show that each of these

small eigenvalues actually equals 0 using the Witten complex structure associ-

ated with these boundary conditions on ∂Ω̇j . To construct such operators L
(1)
f,h

with mixed boundary conditions on Ω̇j , the recent results of [38] and [28] are

used. The 1-form ψ̃j associated with zj is then defined using an eigenform v
(1)
h,j

associated with the eigenvalue 0 of the operator L
(1)
f,h associated with mixed

boundary conditions on Ω̇j :

ψ̃j :=
χj v

(1)
h,j

‖χj v
(1)
h,j‖L2

w

, (40)

where χj is a well chosen cut-off function with support in Ω̇j . Notice that for j ∈
{1, . . . , n}, the quasi-mode ψ̃j is not only constructed in a neighbourhood of zj :
it has a support as large as needed in Ω. This is a difference with previous
construction in the literature, such as [31]. We need such quasi-modes for the
following reasons. Firstly, we compute the probability that the process (1) leaves
Ω through open sets Σj which are arbitrarily large in Bzj

. Secondly, we use the

fact that the quasi-mode ψ̃j decreases very fast away from zj to get (37). This is
needed to state the hypothesis (23) in terms of Agmon distances, see next step.

Step 2b: Accuracy of the quasi-mode ψ̃j for j ∈ {1, . . . , n}. To obtain a suffi-
ciently small remainder term in (36) (to get (37) and then (38)), one needs to

quantify the decrease of the quasi-mode ψ̃j outside a neighboorhood of zj. This

decrease is obtained with Agmon estimates on v
(1)
h,j which allow to localize ψ̃j in a

neighboorhood of zj . For j ∈ {1, . . . , n}, we prove the following Agmon estimate

on v
(1)
h,j :

∥∥χj v
(1)
h,je

1
h

da(.,zj)
∥∥

H1
w

= O(h−N ), (41)

for some N ∈ N and where da is the Agmon distance defined in (19). To ob-
tain (41), we study the properties of this distance. The boundary of Ω intro-
duces technical difficulties. The Agmon estimate (41) is obtained adapting to
our case techniques developed in [31, 46]. For all j ∈ {1, . . . , n}, using the fact

that
∥∥(1 − π

(1)
h )ψ̃j

∥∥2

L2
w

≤ C√
h

〈
L

D,(1)
f,h ψ̃j , ψ̃j

〉
L2

w

and (41), one shows that

∥∥(1 − π
(1)
h )ψ̃j

∥∥2

L2
w

≤ C h−q e− 2
h

infsupp∇χj
da(.,zj),

for some q > 0. Thus, in order to get (37), the support of ∇χj has to be arbi-
trarily close to x0 and Bc

zj
. This explains the assumptions (22) and (23), and
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the fact that the quasi-mode ψ̃j is not constructed in a neighboorhood of zj

but in a domain Ω̇j arbitrarily large in Ω. This is one of the main differences

compared with [31]. At the end of this step, one has a family (ψ̃j)j∈{1,...,n} which
satisfies (37). This allows us to obtain, in the limit h → 0 (see (38)), for some
c > 0 independent of h and for all k ∈ {1, . . . , n}:

∫

Σk

∂nuh e
− 2

h
f =

n∑

j=1

〈∇ũ, ψ̃j〉L2
w

∫

Σk

ψ̃j · n e− 2
h

f +O
(
e− 2f(zk)−f(x0)+c

h

)
.

Etape 3: computations of
( ∫

Σj

ψ̃j ·n e− 2
h

f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
.

In view of (38) and (39), for all j ∈ {1, . . . , n}, one needs to compute the terms
∫

Σj

ψ̃j · n e− 2
h

f and 〈∇ũ, ψ̃j〉L2
w
.

To do that, we use for all j ∈ {1, . . . , n} a WKB approximation of v
(1)
h,j , denoted

by v
(1)
zj ,wkb. In the literature we follow, v

(1)
zj ,wkb is constructed in a neighboorhood

of zj (see [31, 46]). To prove Theorem 1, we extend the construction of v
(1)
zj ,wkb

to neighbourhoods in Ω of arbitrarily large closed sets included in Bzj
(indeed,

there is no restriction on the size of Σj in Bzj
). Then, the comparison be-

tween v
(1)
h,j and v

(1)
zj ,wkb is also extended to neighbourhoods in Ω of arbitrarily

large closed sets included in Bzj
. Once the terms

( ∫
Σj
ψ̃j ·n e− 2

h
f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
are computed, one concludes the proof of (20) using (39)

and the proof of (24) using (38).

2.2 Most probable exit points from a bounded domain

Setting and motivation. In this section, we present recent results from [23]
on the concentration of the law of XτΩ

on a subset of argmin∂Ωf = {z ∈
∂Ω, f(z) = min∂Ω f} when h → 0 in a more general geometric setting than the
one of Theorem 1. The main purpose of these results is to prove an asymptotic
formula when h → 0 for the concentration of the law of XτΩ

on a set of points
of argmin∂Ωf when Ω contains several local minima of f and when ∂nf is not
necessarily positive on ∂Ω.

Let Y ⊂ ∂Ω. We say that the law of XτΩ
concentrates on Y if for all neigh-

borhood VY of Y in ∂Ω, one has

lim
h→0

P [XτΩ
∈ VY ] = 1,

and if for all x ∈ Y and all neighborhood Vx of x in ∂Ω , it holds:

lim
h→0

P [XτΩ
∈ Vx] > 0.
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In [51, 52, 56], when ∂nf(x) = 0 for all x ∈ ∂Ω or when ∂nf(x) > 0 for all x ∈
∂Ω (and with additional assumptions on f), it has been shown that the law
of XτΩ

concentrates on points where f attains its minimum on ∂Ω (see (10)).
Later on, it has been proved in [15, 16, 39, 40, 58] when ∂nf > 0 on ∂Ω and f
has a unique non degenerate critical point in Ω (which is necessarily its global
minimum in Ω). Tools developed in semi-classical analysis allow us to generalize
this geometric setting. For instance, we consider several critical points of f in Ω
and we drop the assumptions ∂nf > 0 on ∂Ω (however we do not consider the
case when f has saddle points on ∂Ω). Assuming that f and f |∂Ω are Morse
functions, and |∇f | 6= 0 on ∂Ω, we raise the following questions:

– What are the geometric conditions ensuring that, when X0 ∼ νh, the law
of XτΩ

concentrates on points where f attains its minimum on ∂Ω (or a
subset of these points)?

– What are the conditions which ensure that these results extend to some
deterministic initial conditions in Ω ?

The results of [23] aim at answering these questions. Let us recall that when f
and f |∂Ω are Morse functions and when |∇f | 6= 0 on ∂Ω, the elements of the set

{z is a local minimim of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0} (42)

are the generalized saddle points of f on ∂Ω and play the role of saddle points
of f on ∂Ω, see Remark 9. Before stating the main results of [23], let us discuss
the two questions above with one-dimensional examples.

Remark 12. The assumption that the drift term b in (1) is of the form b = −∇f
is essential here to the existence of a limiting exit distribution of Ω when h → 0.
If it is not the case and when for instance the boundary of Ω is a periodic orbit
of the dynamics d

dtx(t) = b
(
x(t)

)
, the phenomenon of cycling discovered by Day

in [17,18] prevents the existence of a limiting exit distribution when h → 0. We
also refer to [3–5] for the study of this phenomenon of cycling.

One-dimensional examples. To discuss the two questions raised in the pre-
vious section, one considers two one-dimensional examples.

Example 1. The goal is here to construct a one-dimensional example for which,
starting from the global minimum of f in Ω or from the quasi-stationary dis-
tribution νh, the law of XτΩ

does not concentrate on points where f attains
its minimum on ∂Ω. To this end, let us consider the function f represented in
Figure 4 for which one has the following result.

Proposition 5. Let z1 < z2 and f ∈ C∞([z1, z2],R) be a Morse function. Let us
assume that f(z1) < f(z2), {x ∈ [z1, z2], f ′(x) = 0} = {c, x1} with z1 < c < x1 <
z2 and f(x1) < f(z1) < f(z2) < f(c) (see Figure 4). Then, for all x ∈ (c, z2],
there exists ε > 0 such that when h → 0:

Px[Xτ(z1,z2)
= z1] = O(e− ε

h ) and thus Px[Xτ(z1,z2)
= z2] = 1 +O(e− ε

h ).
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x1

•

{f = min∂Ω f}

z1

•
z2

•
c
•

Fig. 4. Example of a function f such that, starting from the global minimum x1 of f

in Ω or from the quasi-stationary distribution νh, the law of XτΩ concentrates on z2

whereas f(z2) > min∂Ω f = f(z1) .

Moreover, there exists ε > 0 such that when h → 0:

Pνh
[Xτ(z1,z2)

= z1] = O(e− ε
h ) and thus Pνh

[Xτ(z1,z2)
= z2] = 1 +O(e− ε

h ),

where νh is the quasi-stationary distribution of the process (1) in (z1, z2).

The proof of Proposition 5 is based on the fact that in one dimension, explicit
formulas can be written for x 7→ Px[Xτ(z1,z2)

= zj ] (j ∈ {1, 2}), see [57, Section
A.5.3.1] or [23]. According to Proposition 5, when h → 0 and when X0 = x ∈
(c, z2) or X0 ∼ νh, the process (1) leaves Ω = (z1, z2) through z2. However, the
generalized saddle point z2 (see (42)) is not the global minimum of f on ∂Ω. This
fact can be explained as follows: the potential barrier f(c) − f(x1) is larger than
the potential barrier f(z2) − f(x1). Thus, the law of XτΩ

when X0 = x ∈ (c, z2)
cannot concentrate on z1 since it is less costly to leave Ω through z2 rather than
to cross the barrier f(c) − f(x1) to exit through z1. Moreover, it can be proved
that the quasi-stationary distribution νh concentrates in any neighborhood of x1

in the limit h → 0, which explains why the law of XτΩ
when X0 ∼ νh also

concentrates on z2. Concerning the two questions raised in the previous section,
this example indicates that in the small temperature regime, there exist cases for
which the process (1), starting from the global minimum of f in Ω or from νh,
leaves Ω through a point which is not a global minimum of f |∂Ω.

This example also suggests the following. If one wants the law of XτΩ
to con-

centrate when h → 0 on points in ∂Ω where f attains its minimum, one should
exclude cases when the largest timescales for the diffusion process in Ω are
not related to energetic barriers involving points of ∂Ω where f |∂Ω attains its
minimum. In order to exclude such cases, we will assume in the following that
the closure of each of the connected components of {f < min∂Ω f} intersects ∂Ω.

Notice that if one modifies the function f in the vicinity of z1 such that ∂nf(z1) >
0 and argminΩf = {x1}, z1 is then a generalized order one saddle point and the
previous conclusions remain unchanged.

Example 2. Let us construct a one-dimensional example for which the concen-
tration of the law of XτΩ

on argmin∂Ωf is not the same starting from the global
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minima of f in Ω or from the quasi-stationary distribution νh. For this purpose,
let us consider z1 > 0, z2 := −z1, z = 0 and f ∈ C∞([z1, z2],R) such that

f is a Morse and even function, {x ∈ [z1, z2], f ′(x) = 0} = {x1, z, x2}, (43)

where

z1 < x1 < z < x2 < z2, f(z1) = f(z2) > f(x1) = f(x2), f(z1) < f(z). (44)

A function f satisfying (43) and (44) is represented in Figure 5. One has the
following result.

{f = min∂Ω f}

z1

•
z2

•
z
•

x1

•
x2

•

Fig. 5. One-dimensional example where (43) and (44) are satisfied.

Proposition 6. Let z1 > 0, z2 := −z1, z = 0 and f ∈ C∞([z1, z2],R) which
satisfies (43) and (44). Then, one has for all h > 0,

Pνh
[Xτ(z1,z2)

= z1] =
1

2
and Pνh

[Xτ(z1,z2)
= z2] =

1

2
, (45)

where νh is the quasi-stationary distribution of the process (1) in (z1, z2). More-
over, for all x ∈ (z1, z), there exists c > 0 such that when h → 0,

Px[Xτ(z1,z2)
= z1] = 1 +O(e− c

h ) and Px[Xτ(z1,z2)
= z2] = O(e− c

h ), (46)

and for all x ∈ (z, z2), there exists c > 0 such that when h → 0

Px[Xτ(z1,z2)
= z1] = O(e− c

h ) and Px[Xτ(z1,z2)
= z2] = 1 +O(e− c

h ). (47)

The asymptotic estimate (45) is a consequence of the fact that f is an even
function (see [23, Section 1]). The asymptotic estimates (46) and (47) are proved
exactly as Proposition 5, see [23, Section 1]. Let us also mention that Proposi-
tion 6 is a consequence of the results [47]. Concerning the two questions raised
in the previous section, Proposition 6 shows that, when f satisfies (43) and (44),
the concentration of the law of XτΩ

on {z1, z2} is not the same starting from
x ∈ (z1, z2) \ {z} or from νh. This is due to the fact that in this case the quasi-
stationary distribution νh has an equal repartition in all disjoint neighboorhoods
of x1 and x2, i.e. for every (a1, b1) ⊂ (z1, z) and (a2, b2) ⊂ (z, z2) such that
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a1 < x1 < b1 and a2 < x2 < b2, it holds for any j ∈ {1, 2}, limh→0

∫ bj

aj
νh = 1

2

(see [47]). When X0 = x ∈ (z1, z2) \ {z}, the asymptotic estimates (46) and (47)
can be explained by the existence of a barrier f(z) − f(x1) which is larger than
f(z1) − f(x1). In order to exclude such cases, we will assume in the follow-
ing that there exists a connected component C of {f < min∂Ω f}, such that
argminΩf ⊂ C.

Main results on the exit point distribution. In this section, a simplified
version of the results of [23] is presented. The aim is to exhibit a simple geometric
setting for which, on the one hand, the law of XτΩ

concentrates on the same
points of ∂Ω when X0 ∼ νh or X0 = x ∈ Ω for some x ∈ {f < min∂Ω f} and, on
the other hand, this concentration occurs on generalized saddle points of f which
belong to argmin∂Ωf . To this end, let us define the two following assumptions:

– [H-Morse] The function f : Ω → R is C∞. The functions f : Ω → R

and f |∂Ω are Morse functions. Moreover, |∇f |(x) 6= 0 for all x ∈ ∂Ω.

– [H-Min] The open set {f < min∂Ω f} is nonempty, contains all the local
minima of f in Ω and the closure of each of the connected components of
{f < min∂Ω f} intersects ∂Ω. Furthermore, there exists a connected com-
ponent C of {f < min∂Ω f} such that argminΩf ⊂ C.

Notice that under [H-Morse] and [H-Min], it holds min∂Ω f > minΩ f =
minΩ f . Under the assumptions [H-Morse] and [H-Min], one defines the set
of points {z1, . . . , zk0} by

C ∩ ∂Ω = {z1, . . . , zk0}. (48)

Remark 13. As already explained, the points z1, . . . ., zk0 are generalized saddle
points of f on ∂Ω (see (42)) since they satisfy

{z1, . . . , zk0} ⊂ {z ∈ ∂Ω, ∂nf(z) > 0} ∩ argmin∂Ωf. (49)

Remark 14. Under [H-Min], the normal derivative of f can change sign and
the function f can have saddle points in Ω higher than min∂Ω f , see for instance
Figure 6.

As shown in the following theorem, the assumption [H-Min] ensures that
the quasi-stationary distribution νh concentrates in neighborhoods of the global
minima of f in C and, starting from x ∈ C or from νh, that the concentration
of the law of XτΩ

when h → 0 occurs on the set of generalized saddle points
{z1, . . . , zk0} (see (48)). Notice that the assumption [H-Min] is not satisfied in
the two examples given in the previous section (see Figures 4 and 5).

Theorem 2. Let us assume that the hypotheses [H-Morse] and [H-Min] are
satisfied. Let νh be the quasi-stationary distribution of the process (1) in Ω
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z1

x1 x2

C = {f < min∂Ω f}

Fig. 6. A one-dimensional example where [H-Morse] and [H-Min] are satisfied, the
normal derivative of f changes sign and the function f has a saddle point in Ω higher
than min∂Ω f . In this example, {f < min∂Ω f} is connected and thus C = {f <

min∂Ω f}. Moreover, C ∩ ∂Ω = {z1}.

(see (14)). Let V be an open subset of Ω. Then, if V ∩ argminCf 6= ∅, one
has in the limit h → 0:

νh

(
V
)

=

∑
x∈V∩argminCf

(
det Hessf(x)

)− 1
2

∑
x∈argminCf

(
det Hessf(x)

)− 1
2

(
1 +O(h)

)
.

When V ∩ argminCf = ∅, there exists c > 0 such that when h → 0:

νh

(
V
)

= O
(
e− c

h

)
.

In addition, let F ∈ C∞(∂Ω,R). Then, when h → 0:

Eνh
[F (XτΩ

)] =

k0∑

i=1

F (zi) ai +O(h
1
4 ), (50)

where for i ∈ {1, . . . , k0},

ai =
∂nf(zi)√

det Hessf
∣∣
∂Ω

(zi)




k0∑

j=1

∂nf(zj)√
det Hessf

∣∣
∂Ω

(zj)




−1

. (51)

Finally, (50) holds when X0 = x ∈ C.

Remark 15. In [23], one also gives sharp asymptotic estimates of λh and ∂nuh

in a more general setting than the one of Theorem 2 (for instance, we study the
case when f has local minima higher than min∂Ω f). However, in [23], we do not
study the precise asymptotic behaviour of XτΩ

when h → 0 near generalized
saddle points z of f on ∂Ω which are such that f(z) > min∂Ω f as we did in [22]
(see Corollary 1). Finally, in [23], the optimality of the remainder term O(h

1
4 )

in (50) is discussed and improved in some situations.
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Ideas and sketch of the proof of Theorem 2. In this section, one gives the
sketch of the proof of (50) which is the main result of Theorem 2. Recall that
from (15), for F ∈ C∞(∂Ω,R)

Eνh

[
F (XτΩ

)
]

= − h

2λh

∫

Σ

F ∂nuhe
− 2

h
f

∫

Ω

uhe
− 2

h
f

,

where uh is the eigenfunction associated with the principal eigenvalue λh of L
D,(0)
f,h .

Therefore, to prove (50), one studies the asymptotic behaviour when h → 0 of
the following quantities

λh, ∂nuh and

∫

Ω

uhe
− 2

h
f . (52)

Under the assumptions [H-Morse] and [H-Min], one defines

m0 := Card
(

{z ∈ Ω, z is a local minimum of f}
)

and

m1 : = Card
(

{z is a local minimum of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0}
)

+ Card
(

{z is saddle point of f}
)
. (53)

The integer m1 is the number of generalized saddle points of f in Ω (see [31,
Section 5.2]). To study the asymptotic behaviour when h → 0 of the quantities
involved in (52), the starting point is to again observe that ∇uh is solution to
an eigenvalue problem for the same eigenvalue λh (as already explained at the
end of Section 2.1). Indeed, ∇uh is solution to (see (27))





L
(1)
f,h∇uh = λh∇uh in Ω,

∇Tuh = 0 on ∂Ω,
(

−h

2
div + ∇f ·

)
∇uh = 0 on ∂Ω,

(54)

where we recall that L
(1)
f,h = − h

2∆ + ∇f · ∇ + Hess f is an operator acting

on 1-forms. Let us also recall that the operator L
(1)
f,h with tangential boundary

conditions (54) is denoted by L
D,(1)
f,h . From (54), ∇uh is an eigenform of L

D,(1)
f,h

associated with λh.
The second ingredient is the following result: under the assumptions [H-Morse]

and [H-Min] and when h → 0, the operator L
D,(0)
f,h has exactly m0 eigenvalues

smaller than
√

h
2 and L

D,(1)
f,h has exactly m1 eigenvalues smaller than

√
h

2 (see [31,
Chapter 3]). Actually, all theses small eigenvalues are exponentially small when
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h → 0, i.e. they are all O
(
e− c

h

)
for some c > 0 independent of h. In particular λh

is an exponentially small eigenvalue of L
D,(0)
f,h and of L

D,(1)
f,h . Let us denote by π

(0)
h

(resp. π
(1)
h ) the orthogonal projector in L2

w(Ω) onto the m0 (resp. m1) smallest

eigenvalues of L
D,(0)
f,h (resp. L

D,(1)
f,h ). Then, according to the foregoing, one has

when h → 0:
dim Ran π

(0)
h = m0, dim Ranπ

(1)
h = m1

and
∇uh ∈ Ranπ

(1)
h .

Let us now explain how we prove Theorem 2. To this end, let us introduce the
set of local minima of f in Ω,

U
Ω
0 := {x ∈ Ω, x is a local minimum of f},

and the set of generalized saddle points of f in Ω,

U
Ω
1 =

(
{z is a local minimum of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0}

)

⋃
{z is a saddle point of f}.

Let us recall that m0 = Card
(
U

Ω
0

)
and, from (53), that m1 = Card

(
U

Ω
1

)
. The

first step to prove Theorem 2 consists in constructing two maps j̃ and j. The goal
of the map j is to associate each local minimum x of f with a set of generalized

saddle points j(x) ⊂ U
Ω
1 such that

∀z, y ∈ j(x), f(z) = f(y),

and such that, in the limit h → 0, there exists at least one eigenvalue of L
D,(0)
f,h

whose exponential rate of decay is 2
(
f(j(x)) − f(x)

)
i.e.

∃λ ∈ σ
(
L

D,(0)
f,h

)
such that lim

h→0
h lnλ = −2

(
f(j(x)) − f(x)

)
.

The aim of the map j̃ is to associate each local minimum x of f with the connected
component of {f < f(j(x))} which contains x.

The second step consists in constructing bases of Ranπ
(0)
h and Ranπ

(1)
h . To this

end, one constructs two families of quasi-modes, denoted by (ũk)k∈{1,...,m0} and

(ψ̃j)j∈{1,...,m1}, which are then respectively projected onto Ranπ
(0)
h and Ranπ

(1)
h .

To construct the family of 1-forms (ψ̃j)j∈{1,...,m1}, we proceed as follows. For each
saddle point z of f in Ω, following the procedure of [30], one constructs a 1-form
supported in a neighboorhood of z in Ω. For a local minimum z of f |∂Ω such
that ∂nf(z) > 0, one constructs a 1-form supported in a neighboorhood of z
in Ω as made in [31]. To construct the family of functions (ũk)k∈{1,...,m0}, one
constructs for each local minimum x of f a smooth function whose support is
almost j̃(x) (this construction is close to the one made in [30, 31, 36, 46, 54]).
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The next step consists in finding a sharp asymptotic equivalent for λh when
h → 0. The quantity 2

hλh equals the square of the smallest singular values of the
finite dimensional operator

∇ : Ran π
(0)
h → Ranπ

(1)
h .

To study the asymptotic behaviour when h → 0 of this smallest singular value,

one uses the bases of Ranπ
(0)
h and Ran π

(1)
h which have been constructed pre-

viously. The analysis of this finite dimensional problem is inspired by [36] and
also yields the asymptotic equivalent of

∫
Ω uh e

− 2
h

f when h → 0.

Then, we study the asymptotic behaviour of the normal derivative of uh on ∂Ω
when h → 0 to deduce that the law of XτΩ

concentrates when h → 0 on C∩∂Ω =
{z1, . . . , zk0} when X0 ∼ νh.
Lastly, one proves “leveling” results on the function

x 7→ Ex[F (XτΩ
)]

to obtain that when X0 = x ∈ C, the law of XτΩ
also concentrates when h → 0

on {z1, . . . , zk0 }.

To conclude, the main results of [23] are the following:

1. One uses techniques from semi-classical analysis to study the asymptotic
behaviours of λh and ∂nuh when h → 0, and then, the concentration of the
law of XτΩ

on a subset of argmin∂Ωf when X0 ∼ νh.
2. One identifies the points of argmin∂Ωf where the law of XτΩ

concentrates
when X0 ∼ νh: this set of points is {z1, . . . , zk0 }. Moreover, explicit formulas
for their relative probabilities are given (see indeed (51)) as well as precise
remainder terms.

3. One extends the previous results on the law of XτΩ
to a deterministic initial

condition in Ω: X0 = x where x ∈ C.
4. These results hold under weak assumptions on the function f and one-

dimensional examples are given to explain why the geometric assumptions
are needed to get them.

Conclusion. We presented recent results which justify the use of a kinetic Monte
Carlo model parametrized by Eyring-Kramers formulas to model the exit event
from a metastable state Ω for the overdamped Langevin dynamics (1). Our
analysis is for the moment limited to situations where |∇f | 6= 0 on ∂Ω, which
does not allow to consider order one saddle points on ∂Ω. The extensions of [22]
and [23] which are currently under study are the following: the case when f has
saddle points on ∂Ω and the case when the diffusion process Xt = (qt, pt) is
solution to the Langevin stochastic differential equation

{
dqt = ptdt,

dpt = −∇f(qt)dt− γ ptdt+
√
hγ dBt,
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where (qt, pt) ∈ Ω × R
d, Ω being a bounded open subset of Rd.
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60. C. Schütte. Conformational dynamics: modelling, theory, algorithm and applica-
tion to biomolecules, 1998. Habilitation dissertation, Free University Berlin.
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