186 research outputs found
Recommended from our members
Experimental and Theoretical Studies of the Environmental Sensitivity of the Absorption Spectra and Photochemistry of Nitenpyram and Analogs
Neonicotinoid (NN) pesticides have widespread use, largely replacing other pesticides such as the carbamates. Hence, there is a need to understand their environmental fates at a molecular level in various media, especially water. We report here the studies of a nitroenamine NN, nitenpyram (NPM), in aqueous solution where the absorption cross sections in the actinic region above 290 nm are observed to dramatically decrease compared to those in nonaqueous solvents. Quantum chemical calculations show that addition of a proton to the tertiary amine nitrogen in NPM breaks the conjugation in the chromophore, shifting the absorption to shorter wavelengths, consistent with experiment. However, surprisingly, adding a proton to the secondary amine nitrogen leads to its immediate transfer to the NO2 group, preserving the conjugation. This explains why the UV absorption of ranitidine (RAN), which has a similar chromophore but only secondary amine nitrogens, does not show a similar large blue shift in water. Photolysis quantum yields in aqueous NPM solutions were measured to be φ = 0.18 ± 0.07 at 254 nm, (9.4 ± 1.6) × 10-2 with broadband radiation centered at 313 nm and (5.2 ± 1.1) × 10-2 for broadband radiation centered at 350 nm (errors are 2σ). The major products in aqueous solutions are an imine that was also formed in the photolysis of the solid and a carboxylic acid derivative that is unique to the photolysis in water. Combining the larger quantum yields in water with the reduced absorption cross sections results in a calculated lifetime of NPM of only 5 min at a solar zenith angle of 35°, typical of 40°N latitude on April 1. The products do not absorb in the actinic region and hence will be long-lived with respect to photolysis
Recommended from our members
Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS)
Both ambient and laboratory-generated particles can have a surface composition different from the bulk, but there are currently few analytical techniques available to probe these differences. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was applied to solid, laboratory-generated particles with core-shell morphologies formed from a variety of dicarboxylic acids. The soft ionization facilitated parent peak detection for the two compounds, from which the depth probed could be determined from the relative signal intensities. Two different configurations of a custom-made nebulizer are reported that yield different probe depths. In the "orthogonal mode," with the nebulizer ∼10 centimeters away from the particle stream and at a 90° angle to the MS inlet, evaporation of the nebulizer droplets forms ions before interaction with the particles. The probe depth for orthogonal mode EASI-MS is shown to be 2-4 nm in these particle systems. In the "droplet mode", the nebulizer and particle streams are in close proximity to each other and the MS inlet so that the particles interact with charged liquid droplets. This configuration resulted in full dissolution of the particles and gives particle composition similar to that from collection on filters and extraction of the particles (bulk). These studies establish that EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles
The solar eclipse and associated atmospheric variations observed in South Korea on 22 July 2009
A partial solar eclipse occurred in South Korea on 22 July 2009. It started at 09:30 a.m. and lasted until 12:14 LST with coverage of between 76.8% and 93.1% of the sun. The observed atmospheric effects of the eclipse are presented. It was found that from the onset of the eclipse, solar radiation was reduced by as much as 88.1 ∼ 89.9% at the present research centre. Also, during the eclipse, air temperature decreased slightly or remained almost unchanged. After the eclipse, however, it rose by 2.5 to 4.5°C at observed stations. Meanwhile, relative humidity increased and wind speeds were lowered by the eclipse. Ground-level ozone was observed to decrease during the event
Recommended from our members
Unrecognized volatile and semi-volatile organic compounds from brake wear
Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to "zero emission vehicles" is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogen-containing organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out
Molecular decoding using luminescence from an entangled porous framework
Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide–aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration
Fetal Window of Vulnerability to Airborne Polycyclic Aromatic Hydrocarbons on Proportional Intrauterine Growth Restriction
Background: Although the entire duration of fetal development is generally considered a highly susceptible period, it is of public health interest to determine a narrower window of heightened vulnerability to polycyclic aromatic hydrocarbons (PAHs) in humans. We posited that exposure to PAHs during the first trimester impairs fetal growth more severely than a similar level of exposure during the subsequent trimesters. Methods: In a group of healthy, non-smoking pregnant women with no known risks of adverse birth outcomes, personal exposure to eight airborne PAHs was monitored once during the second trimester for the entire cohort (n = 344), and once each trimester within a subset (n = 77). Both air monitoring and self-reported PAH exposure data were used in order to statistically estimate PAH exposure during the entire gestational period for each individual newborn. Results: One natural-log unit increase in prenatal exposure to the eight summed PAHs during the first trimester was associated with the largest decrement in the Fetal Growth Ratio (FGR) (23%, 95 % Confidence Interval (CI), 25 to20%), birthweight (2105 g, 95 % CI, 2188 to 222 g), and birth length (20.78 cm, 95 % CI, 21.30 to 20.26 cm), compared to the unit effects of PAHs during the subsequent trimesters, after accounting for confounders. Furthermore, a unit exposure during the first trimester was associated with the largest elevation in Cephalization Index (head to weight ratio) (3 mm/g, 95 % CI, 1 to 5 mm/g). PAH exposure was not associated with evidence of asymmetric growth restriction in this cohort
Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008
- …
