12 research outputs found

    Adhesive properties of an outer structure of Clostridium perfringens type A isolated from piglets with with catarrhal enteritis Propriedades adesivas de uma estrutura externa de Clostridium perfringens tipo A isolada de leitões com enterite catarral

    Get PDF
    One strain (S32) of Clostridium perfringens type A was isolated from a case of catarrhal enteritis of piglets. This strain was able to adhere to HeLa cells showing an adherence index (AI) of 25.15 ± 1.26 (mean ± 1 standard error of the mean). Treatment of the bacterial cells with trypsin (0.25mg/ml) decreased in 70%-80% the AI and metaperiodate (10mg/ml) abolished completely the adherence, suggesting that the structure responsible for this phenomenon was probably a glycoprotein. Heating of bacterial suspensions (100ºC/5 min) before carrying out the adhesion test decreased the AI rendering it equal to the negative controls. Rabbit homologous S32 antiserum inhibited the adherence up to dilutions of 1: 640, at least. The piglet ileal loop assay, carried out with strains S32 and Jab-1 (negative control) demonstrated that the strain S32 was able to adhere to the intestinal epithelial cells when examined after Gram staining. Transmission electron microcopy (TEM) demonstrated that S32 strain displayed a loose fibrillar material not seen with Jab-1. Stabilization of the bacterial cells with homologous antiserum of strain S32, followed by staining with rhuteniun red, revealed loose long fibrillar material on the outer surface of the cells, that sometimes could be seen spreading out from the cells and linking bacterial cells. The question whether this structure might be an adhesin for this strain of Cl. perfringes type A, perhaps playing a role in the pathogenesis of the catarrhal enteritis of piglets, is dependent on further studies.<br>Uma amostra (S32) de Clostridium perfringens tipo A foi isolada de um caso de enterite catarral em leitões. Esta amostra foi capaz de aderir a células HeLa mostrando um índice de adesão (AI) de 25,15 ± 1,26 (media ± 1 erro padrão da media). Tratamento das células bacterianas com tripsina (0,25mg/ml) diminuiu 70%-80% e metaperiodato (10mg/ml) aboliu significantemente a adesão, sugerindo que a estrutura responsável por esta adesão era provavelmente uma glicoproteína. O tratamento pelo calor das suspensões bacterianas (100ºC/5min) diminuiu o AI ao nível dos controles negativos. Soro de coelho anti-S32 inibiu a aderência a células HeLa até a diluição de 1:640, pelo menos. O teste da alça ligada de leitão recem nascido demonstrou que a amostra S32 era capaz de aderir às células epiteliais intestinais, conforme demonstrado pela coloração de Gram de secções histológicas do intestino dos animais inoculados. O estudo em Microscópio Eletrônico de Transmissão demonstrou que a amostra S32 de Cl. perfringens mostrava um material de natureza fibrilar frouxa, ao contrário da amostra Jab-1 (controle negativo) que demonstrava uma aparência "nua ou lisa". A estabilização das células bacterianas com antissoro homólogo (S32), seguida de coloração com vermelho de rutenio, revelou de maneira mais nítida que longos materiais fibrilares, de aparência frouxa, se estendendo para longe da célula bacteriana, ligando por vezes estas células entre si. A possibilidade desta estrutura ser uma adesina para esta amostra de Cl. perfringens tipo A, talvez desempenhando um papel na patogenia da enterite catarral de leitões, depende de mais estudos

    Athlome project consortium: A concerted effort to discover genomic and other &quot;omic&quot; markers of athletic performance

    No full text
    Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14 -17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium. © 2016 the American Physiological Society
    corecore