5,290 research outputs found

    Strains and Jets in Black Hole Fields

    Full text link
    We study the behaviour of an initially spherical bunch of particles emitted along trajectories parallel to the symmetry axis of a Kerr black hole. We show that, under suitable conditions, curvature and inertial strains compete to generate jet-like structures.Comment: To appear in the Proceedings of the Spanish Relativity Meeting 2007 held in Tenerife (Spain) 3 Figure

    Spinning test particles and clock effect in Kerr spacetime

    Full text link
    We study the motion of spinning test particles in Kerr spacetime using the Mathisson-Papapetrou equations; we impose different supplementary conditions among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze their physical implications in order to decide which is the most natural to use. We find that if the particle's center of mass world line, namely the one chosen for the multipole reduction, is a spatially circular orbit (sustained by the tidal forces due to the spin) then the generalized momentum PP of the test particle is also tangent to a spatially circular orbit intersecting the center of mass line at a point. There exists one such orbit for each point of the center of mass line where they intersect; although fictitious, these orbits are essential to define the properties of the spinning particle along its physical motion. In the small spin limit, the particle's orbit is almost a geodesic and the difference of its angular velocity with respect to the geodesic value can be of arbitrary sign, corresponding to the spin-up and spin-down possible alignment along the z-axis. We also find that the choice of the supplementary conditions leads to clock effects of substantially different magnitude. In fact, for co-rotating and counter-rotating particles having the same spin magnitude and orientation, the gravitomagnetic clock effect induced by the background metric can be magnified or inhibited and even suppressed by the contribution of the individual particle's spin. Quite surprisingly this contribution can be itself made vanishing leading to a clock effect undistiguishable from that of non spinning particles. The results of our analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum Gravity, 200

    Kerr metric, static observers and Fermi coordinates

    Full text link
    The coordinate transformation which maps the Kerr metric written in standard Boyer-Lindquist coordinates to its corresponding form adapted to the natural local coordinates of an observer at rest at a fixed position in the equatorial plane, i.e., Fermi coordinates for the neighborhood of a static observer world line, is derived and discussed in a way which extends to any uniformly circularly orbiting observer there.Comment: 15 page latex iopart class documen

    On gravitomagnetic precession around black holes

    Get PDF
    We compute exactly the Lense-Thirring precession frequency for point masses in the Kerr metric, for arbitrary black hole mass and specific angular momentum. We show that this frequency, for point masses at or close to the innermost stable orbit, and for holes with moderate to extreme rotation, is less than, but comparable to the rotation frequency. Thus, if the quasi periodic oscillations (QPOs) observed in the modulation of the X-ray flux from some black holes candidates are due to Lense-Thirring precession of orbiting material, we predict that a separate, distinct QPO ought to be observed in each object.Comment: Accepted for publication in MNRAS. MN-Latex, 2 figure

    Computing the Exponential of Large Block-Triangular Block-Toeplitz Matrices Encountered in Fluid Queues

    Full text link
    The Erlangian approximation of Markovian fluid queues leads to the problem of computing the matrix exponential of a subgenerator having a block-triangular, block-Toeplitz structure. To this end, we propose some algorithms which exploit the Toeplitz structure and the properties of generators. Such algorithms allow to compute the exponential of very large matrices, which would otherwise be untreatable with standard methods. We also prove interesting decay properties of the exponential of a generator having a block-triangular, block-Toeplitz structure

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Scattering of spinning bodies by a radiation field in Schwarzschild spacetime

    Get PDF
    We extend the analysis of Poynting-Robertson effect, i.e., the deviation from geodesic motion of test particles due to scattering by a superposed radiation field to the Schwarzschild background, to the case of spinning bodies. The extra contribution of the deviation due to spin can be relevant for astrophysical systems like the binary pulsar system PSR J0737-3039 orbiting Sgr A∗, but not for the Earth-Sun system

    Spacetime Slices and Surfaces of Revolution

    Full text link
    Under certain conditions, a (1+1)(1+1)-dimensional slice g^\hat{g} of a spherically symmetric black hole spacetime can be equivariantly embedded in (2+1)(2+1)-dimensional Minkowski space. The embedding depends on a real parameter that corresponds physically to the surface gravity κ\kappa of the black hole horizon. Under conditions that turn out to be closely related, a real surface that possesses rotational symmetry can be equivariantly embedded in 3-dimensional Euclidean space. The embedding does not obviously depend on a parameter. However, the Gaussian curvature is given by a simple formula: If the metric is written g=ϕ(r)−1dr2+ϕ(r)dθ2g = \phi(r)^{-1} dr^2 + \phi(r) d\theta^2, then \K_g=-{1/2}\phi''(r). This note shows that metrics gg and g^\hat{g} occur in dual pairs, and that the embeddings described above are orthogonal facets of a single phenomenon. In particular, the metrics and their respective embeddings differ by a Wick rotation that preserves the ambient symmetry. Consequently, the embedding of gg depends on a real parameter. The ambient space is not smooth, and κ\kappa is inversely proportional to the cone angle at the axis of rotation. Further, the Gaussian curvature of g^\hat{g} is given by a simple formula that seems not to be widely known.Comment: 15 pages, added reference

    Dark energy from cosmological fluids obeying a Shan-Chen nonideal equation of state

    No full text
    We consider a Friedmann-Robertson-Walker universe with a fluid source obeying a nonideal equation of state with ‘‘asymptotic freedom,’’ namely ideal gas behavior (pressure changes directly proportional to density changes) both at low and high density regimes, following a fluid dynamical model due to Shan and Chen. It is shown that, starting from an ordinary energy density component, such fluids naturally evolve towards a universe with a substantial ‘‘dark energy’’ component at the present time, with no need of invoking any cosmological constant. Moreover, we introduce a quantitative indicator of darkness abundance, which provides a consistent picture of the actual matter-energy content of the Universe

    Electrocardiogram of the Mixmaster Universe

    Full text link
    The Mixmaster dynamics is revisited in a new light as revealing a series of transitions in the complex scale invariant scalar invariant of the Weyl curvature tensor best represented by the speciality index S\mathcal{S}, which gives a 4-dimensional measure of the evolution of the spacetime independent of all the 3-dimensional gauge-dependent variables except for the time used to parametrize it. Its graph versus time characterized by correlated isolated pulses in its real and imaginary parts corresponding to curvature wall collisions serves as a sort of electrocardiogram of the Mixmaster universe, with each such pulse pair arising from a single circuit or ``complex pulse'' around the origin in the complex plane. These pulses in the speciality index and their limiting points on the real axis seem to invariantly characterize some of the so called spike solutions in inhomogeneous cosmology and should play an important role as a gauge invariant lens through which to view current investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex figures; added example of a transient true spike to contrast with the permanent true spike example from the Lim family of true spike solutions; remarks in introduction and conclusion adjusted and toned down; minor adjustments to the remaining tex
    • …
    corecore