We compute exactly the Lense-Thirring precession frequency for point masses
in the Kerr metric, for arbitrary black hole mass and specific angular
momentum. We show that this frequency, for point masses at or close to the
innermost stable orbit, and for holes with moderate to extreme rotation, is
less than, but comparable to the rotation frequency. Thus, if the quasi
periodic oscillations (QPOs) observed in the modulation of the X-ray flux from
some black holes candidates are due to Lense-Thirring precession of orbiting
material, we predict that a separate, distinct QPO ought to be observed in each
object.Comment: Accepted for publication in MNRAS. MN-Latex, 2 figure