168 research outputs found
Phase Transitions of Hard Disks in External Periodic Potentials: A Monte Carlo Study
The nature of freezing and melting transitions for a system of hard disks in
a spatially periodic external potential is studied using extensive Monte Carlo
simulations. Detailed finite size scaling analysis of various thermodynamic
quantities like the order parameter, its cumulants etc. are used to map the
phase diagram of the system for various values of the density and the amplitude
of the external potential. We find clear indication of a re-entrant liquid
phase over a significant region of the parameter space. Our simulations
therefore show that the system of hard disks behaves in a fashion similar to
charge stabilized colloids which are known to undergo an initial freezing,
followed by a re-melting transition as the amplitude of the imposed, modulating
field produced by crossed laser beams is steadily increased. Detailed analysis
of our data shows several features consistent with a recent dislocation
unbinding theory of laser induced melting.Comment: 36 pages, 16 figure
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Surface critical exponents at a uniaxial Lifshitz point
Using Monte Carlo techniques, the surface critical behaviour of
three-dimensional semi-infinite ANNNI models with different surface
orientations with respect to the axis of competing interactions is
investigated. Special attention is thereby paid to the surface criticality at
the bulk uniaxial Lifshitz point encountered in this model. The presented Monte
Carlo results show that the mean-field description of semi-infinite ANNNI
models is qualitatively correct. Lifshitz point surface critical exponents at
the ordinary transition are found to depend on the surface orientation. At the
special transition point, however, no clear dependency of the critical
exponents on the surface orientation is revealed. The values of the surface
critical exponents presented in this study are the first estimates available
beyond mean-field theory.Comment: 10 pages, 7 figures include
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
We describe an efficient Monte Carlo algorithm using a random walk in energy
space to obtain a very accurate estimate of the density of states for classical
statistical models. The density of states is modified at each step when the
energy level is visited to produce a flat histogram. By carefully controlling
the modification factor, we allow the density of states to converge to the true
value very quickly, even for large systems. This algorithm is especially useful
for complex systems with a rough landscape since all possible energy levels are
visited with the same probability. In this paper, we apply our algorithm to
both 1st and 2nd order phase transitions to demonstrate its efficiency and
accuracy. We obtained direct simulational estimates for the density of states
for two-dimensional ten-state Potts models on lattices up to
and Ising models on lattices up to . Applying this approach to
a 3D spin glass model we estimate the internal energy and entropy at
zero temperature; and, using a two-dimensional random walk in energy and
order-parameter space, we obtain the (rough) canonical distribution and energy
landscape in order-parameter space. Preliminary data suggest that the glass
transition temperature is about 1.2 and that better estimates can be obtained
with more extensive application of the method.Comment: 22 pages (figures included
Self-Averaging, Distribution of Pseudo-Critical Temperatures and Finite Size Scaling in Critical Disordered Systems
The distributions of singular thermodynamic quantities in an ensemble
of quenched random samples of linear size at the critical point are
studied by Monte Carlo in two models. Our results confirm predictions of
Aharony and Harris based on Renormalization group considerations. For an
Ashkin-Teller model with strong but irrelevant bond randomness we find that the
relative squared width, , of is weakly self averaging. , where is the specific heat exponent and is the
correlation length exponent of the pure model fixed point governing the
transition. For the site dilute Ising model on a cubic lattice, known to be
governed by a random fixed point, we find that tends to a universal
constant independent of the amount of dilution (no self averaging). However
this constant is different for canonical and grand canonical disorder. We study
the distribution of the pseudo-critical temperatures of the ensemble
defined as the temperatures of the maximum susceptibility of each sample. We
find that its variance scales as and NOT as
R_\chi\sim 70R_\chi (T_c)\chiT_c(i,l)m_i(T_c,l)T_c(i,l)(T-T_c(i,l))/T_c$. This function is found to be universal and to behave
similarly to pure systems.Comment: 31 pages, 17 figures, submitted to Phys. Rev.
Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy
We develop information-theoretic measures of spatial structure and pattern in
more than one dimension. As is well known, the entropy density of a
two-dimensional configuration can be efficiently and accurately estimated via a
converging sequence of conditional entropies. We show that the manner in which
these conditional entropies converge to their asymptotic value serves as a
measure of global correlation and structure for spatial systems in any
dimension. We compare and contrast entropy-convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial
structure.Comment: 11 pages, 5 figures,
http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm
Surface critical behavior in fixed dimensions : Nonanalyticity of critical surface enhancement and massive field theory approach
The critical behavior of semi-infinite systems in fixed dimensions is
investigated theoretically. The appropriate extension of Parisi's massive field
theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel
analyses of surface critical exponents of the special and ordinary phase
transitions yield estimates in reasonable agreement with recent Monte Carlo
results. This includes the crossover exponent , for which we obtain
the values and , considerably
lower than the previous -expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page
A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit
We study the melting of charge order in the half doped manganites using a
model that incorporates double exchange, antiferromagnetic superexchange, and
Jahn-Teller coupling between electrons and phonons. We primarily use a real
space Monte Carlo technique to study the phase diagram in terms of applied
field and temperature , exploring the melting of charge order with
increasing and its recovery on decreasing . We observe hysteresis in
this response, and discover that the `field melted' high conductance state can
be spatially inhomogeneous even without extrinsic disorder. The hysteretic
response plays out in the background of field driven equilibrium phase
separation. Our results, exploring , , and the electronic parameter
space, are backed up by analysis of simpler limiting cases and a Landau
framework for the field response. This paper focuses on our results in the
`clean' systems, a companion paper studies the effect of cation disorder on the
melting phenomena.Comment: 16 pages, pdflatex, 11 png fig
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State
We present the general theory of clean, two-dimensional, quantum Heisenberg
antiferromagnets which are close to the zero-temperature quantum transition
between ground states with and without long-range N\'{e}el order. For
N\'{e}el-ordered states, `nearly-critical' means that the ground state
spin-stiffness, , satisfies , where is the
nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered
ground states have a energy-gap, , towards excitations with spin-1,
which satisfies . Under these circumstances, we show that the
wavevector/frequency-dependent uniform and staggered spin susceptibilities, and
the specific heat, are completely universal functions of just three
thermodynamic parameters. Explicit results for the universal scaling functions
are obtained by a expansion on the quantum non-linear sigma model,
and by Monte Carlo simulations. These calculations lead to a variety of
testable predictions for neutron scattering, NMR, and magnetization
measurements. Our results are in good agreement with a number of numerical
simulations and experiments on undoped and lightly-doped .Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx
- …
