199 research outputs found
Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm
We present an automated procedure for the derivation of atmospheric
parameters (Teff, log g, [M/H]) and individual chemical abundances from stellar
spectra. The MATrix Inversion for Spectral SythEsis (MATISSE) algorithm
determines a basis, B_\theta(\lambda), allowing to derive a particular stellar
parameter \theta by projection of an observed spectrum. The B_\theta(\lambda)
function is determined from an optimal linear combination of theoretical
spectra and it relates, in a quantitative way, the variations in the spectrum
flux with variations in \theta. An application of this method to the GAIA/RVS
spectral range is described, together with its performances for different types
of stars of various metallicities. Blind tests with synthetic spectra of
randomly selected parameters and observed input spectra are also presented. The
method gives rapid, accurate and stable results and it can be efficiently
applied to the study of stellar populations through the analysis of large
spectral data sets, including moderate to low signal to noise spectra
Introduction to the Restoration of Astrophysical Images by Multiscale Transforms and Bayesian Methods
This book is a collection of 19 articles which reflect the courses given at the Collège de France/Summer school “Reconstruction d'images − Applications astrophysiques“ held in Nice and Fréjus, France, from June 18 to 22, 2012. The articles presented in this volume address emerging concepts and methods that are useful in the complex process of improving our knowledge of the celestial objects, including Earth
A multiscale regularized restoration algorithm for XMM-Newton data
We introduce a new multiscale restoration algorithm for images with few
photons counts and its use for denoising XMM data. We use a thresholding of the
wavelet space so as to remove the noise contribution at each scale while
preserving the multiscale information of the signal. Contrary to other
algorithms the signal restoration process is the same whatever the signal to
noise ratio is. Thresholds according to a Poisson noise process are indeed
computed analytically at each scale thanks to the use of the unnormalized Haar
wavelet transform. Promising preliminary results are obtained on X-ray data for
Abell 2163 with the computation of a temperature map.Comment: To appear in the Proceedings of `Galaxy Clusters and the High
Redshift Universe Observed in X-rays', XXIth Moriond Astrophysics Meeting
(March 2001), Eds. Doris Neumann et a
Parameter Estimation from an Optimal Projection in a Local Environment
The parameter fit from a model grid is limited by our capability to reduce
the number of models, taking into account the number of parameters and the non
linear variation of the models with the parameters. The Local MultiLinear
Regression (LMLR) algorithms allow one to fit linearly the data in a local
environment. The MATISSE algorithm, developed in the context of the estimation
of stellar parameters from the Gaia RVS spectra, is connected to this class of
estimators. A two-steps procedure was introduced. A raw parameter estimation is
first done in order to localize the parameter environment. The parameters are
then estimated by projection on specific vectors computed for an optimal
estimation. The MATISSE method is compared to the estimation using the
objective analysis. In this framework, the kernel choice plays an important
role. The environment needed for the parameter estimation can result from it.
The determination of a first parameter set can be also avoided for this
analysis. These procedures based on a local projection can be fruitfully
applied to non linear parameter estimation if the number of data sets to be
fitted is greater than the number of models
The AMBRE Project: Stellar Parameterisation of the ESO:UVES archived spectra
The AMBRE Project is a collaboration between the European Southern
Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been
established in order to carry out the determination of stellar atmospheric
parameters for the archived spectra of four ESO spectrographs.
The analysis of the UVES archived spectra for their stellar parameters has
been completed in the third phase of the AMBRE Project. From the complete
ESO:UVES archive dataset that was received covering the period 2000 to 2010,
51921 spectra for the six standard setups were analysed. The AMBRE analysis
pipeline uses the stellar parameterisation algorithm MATISSE to obtain the
stellar atmospheric parameters. The synthetic grid is currently constrained to
FGKM stars only.
Stellar atmospheric parameters are reported for 12,403 of the 51,921 UVES
archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample
and ~3,708 stars. Effective temperature, surface gravity, metallicity and alpha
element to iron ratio abundances are provided for 10,212 spectra (~19.7%),
while at least effective temperature is provided for the remaining 2,191
spectra. Radial velocities are reported for 36,881 (~71.0%) of the analysed
archive spectra. Typical external errors of sigmaTeff~110dex,
sigmalogg~0.18dex, sigma[M/H]~0.13dex, and sigma[alpha/Fe]~0.05dex with some
reported variation between giants and dwarfs and between setups are reported.
UVES is used to observe an extensive collection of stellar and non-stellar
objects all of which have been included in the archived dataset provided to OCA
by ESO. The AMBRE analysis extracts those objects which lie within the FGKM
parameter space of the AMBRE slow rotating synthetic spectra grid. Thus by
homogeneous blind analysis AMBRE has successfully extracted and parameterised
the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES
archive.Comment: 19 pages, 16 figures, 11 table
Représentation des Images via les Maxima en Ondelettes Application à l'extraction des Objets
L'extraction de sources constitue l'une des étapes essentielles de l'analyse des images astronomiques. Dans la présente communication, elle est abordée sous l'angle des maxima locaux de la transformée en ondelettes. L'idée centrale réside dans l'association entre un coefficient en ondelettes et un coefficient d'une fonction d'échelle (pyrel). Cette association résulte d'une interprétation du coefficient en ondelettes basée sur l'ajustement local de l'image avec un profil correspond à une fonction d'échelle superposé à un fond variable. En déterminant les maxima locaux, spatialement et en échelle, de la transformée en ondelettes, on localise ainsi les pyrels qu'on va utiliser pour la reconstruction. Un ajustement des intensités permet de réduire les résidus de la reconstruction. Un processus itératif sur les résidus successifs permet de converger vers une représentation parcimonieuse de l'image. La transformée en ondelettes utilisée pour localiser les pyrels est celle qui provient de l'algorithme à trous. Comme on ne tient compte que des maxima dans la gamme des échelles accessibles, la reconstruction est effectuée à un fond près, tel que sa transformée en ondelettes ne contient aucun coefficient statistiquement significatif. L'ensemble des paramètres des J pyrels détectés, positions, échelles et amplitudes, permet ainsi de reconstruire une image qui ne diffère de l'image originale que de ce fond. On projette ensuite les positions de tous les maxima sur une grille. Un algorithme de croissance de région permet d'attribuer à chaque pixel de cette grille une étiquette, tous les maxima dont les positions appartenant au même domaine connexe ont la même étiquette. Ceci permet d'extraire et de reconstruire les sources correspondantes. Cette nouvelle approche permet ainsi une décomposition très aisée en sources
The Brera Multi-scale Wavelet (BMW) ROSAT HRI source catalog. I: the algorithm
We present a new detection algorithm based on the wavelet transform for the
analysis of high energy astronomical images. The wavelet transform, due to its
multi-scale structure, is suited for the optimal detection of point-like as
well as extended sources, regardless of any loss of resolution with the
off-axis angle. Sources are detected as significant enhancements in the wavelet
space, after the subtraction of the non-flat components of the background.
Detection thresholds are computed through Monte Carlo simulations in order to
establish the expected number of spurious sources per field. The source
characterization is performed through a multi-source fitting in the wavelet
space. The procedure is designed to correctly deal with very crowded fields,
allowing for the simultaneous characterization of nearby sources. To obtain a
fast and reliable estimate of the source parameters and related errors, we
apply a novel decimation technique which, taking into account the correlation
properties of the wavelet transform, extracts a subset of almost independent
coefficients. We test the performance of this algorithm on synthetic fields,
analyzing with particular care the characterization of sources in poor
background situations, where the assumption of Gaussian statistics does not
hold. For these cases, where standard wavelet algorithms generally provide
underestimated errors, we infer errors through a procedure which relies on
robust basic statistics. Our algorithm is well suited for the analysis of
images taken with the new generation of X-ray instruments equipped with CCD
technology which will produce images with very low background and/or high
source density.Comment: 8 pages, 6 figures, ApJ in pres
Multiscale image restoration by the À trous algorithm
The Discrete Wavelet Transform can be performed by several algorithms . Among
them the "À trous" leads ta an extensive data redundancy . Thus this algorithm
is not useful for data compression, but this redundancy can be a useful asset for
image restoration, In this paper. we firstly describe the principles of the algorithm
and some connected tools. Then we describe an iterative restoration method based
on the significant coefficients . The regularization of the inversion is provided by the
restriction of the numberofcoefficients . An example is given from the regularization
of Richarson-Lucy's iterative deconvolution algorithm.La transformation en ondelettes discrète peut être réalisée par différents algorithmes. Parmi ceux-ci, l'algorithme à trous conduit à une importante redondance de données. Si cette redondance le rend impraticable pour la compression des signaux, elle peut être, au contraire, un atout pour la restauration des images. Dans cet article nous exposerons tout d'abord les fondements de cet algorithme et les divers outils associés (transformation, inversion, visualisation). Nous développerons ensuite une méthode itérative de restauration des images basée sur la notion de coefficients significatifs. La réduction des coefficients conduit à régulariser le probllème inverse lié à la déconvolution. Un exemple est donné en se basant sur l'inversion par la méthode de Richardson-Luc
Multiscale methods applied to the analysis of synthetic aperture radar images
In this paper, we propose a filtering multiscale method to remove the speckle noise in synthetic aperture radar (SAR) images . This
filtering is based on the à trous algorithm . It is derived from the multiscale methods developed for astronomical images using the
extraction of significant structures . Nevertheless, the multiplicative behaviour of the speckle implies the wavelet thresholding to be
modified according to the speckle noise statistic properties . We start with a classical approach based on a logarithmic transform
of the image . Then, another method based on the energy of the image is presented . It allows one to obtain a better radiometrical
precision in the filtered image . An original analysis is presented that takes advantage of the information given by the significant
wavelet coefficients obtained from the thresholding procedure . This analysis is used to show the temporal variations at different
scales and to extract the structures at small scales .Cet article propose une méthode de filtrage multiéchelle du bruit de speckle présent dans les images radar à ouverture synthétique. Ce filtrage est basé sur l'utilisation de l'algorithme à trous et s'inspire des méthodes multiéchelle d'extraction des structures significatives développées pour l'imagerie astronomique. Cependant, la nature multiplicative du bruit de speckle conduit à reconsidérer la méthode de seuillage dans l'espace des ondelettes et une première approche basée sur une transformation logarithmique de l'image est présentée. Une seconde approche, s'appuyant sur l'énergie du signal permet d'obtenir des images filtrées ayant une meilleure précision radiométrique. L'information fournie par les coefficients d'ondelettes significatifs est exploitée dans une analyse originale de l'image afin de mettre en évidence les variations temporelles des structures aux différentes échelles, et d'extraire les structures significatives aux petites échelles
- …