85 research outputs found

    Isolation rearing reduces neuronal excitability in dentate gyrus granule cells of adolescent C57BL/6J mice: role of gabaergic tonic currents and neurosteroids

    Get PDF
    Early-life exposure to stress, by impacting on a brain still under development, is considered a critical factor for the increased vulnerability to psychiatric disorders and abuse of psychotropic substances during adulthood. As previously reported, rearing C57BL/6J weanling mice in social isolation (SI) from their peers for several weeks, a model of prolonged stress, is associated with a decreased plasma and brain levels of neuroactive steroids such as 3α,5α-THP, with a parallel up-regulation of extrasynaptic GABAA receptors (GABAAR) in dentate gyrus (DG) granule cells compared to group-housed (GH) mice. In the present study, together with the SI-induced decrease in plasma concentration of both progesterone and 3a,5a-THP, and an increase in THIP-stimulated GABAergic tonic currents, patch-clamp analysis of DG granule cells revealed a significant decrease in membrane input resistance and action potential (AP) firing rate, in SI compared to GH mice, suggesting that SI exerts an inhibitory action on neuronal excitability of these neurons. Voltage-clamp recordings of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) revealed a SI-associated decrease in frequency as well as a shift from paired-pulse (PP) depression to PP facilitation (PPF) of evoked EPSCs, indicative of a reduced probability of glutamate release. Daily administration of progesterone during isolation reverted the changes in plasma 3α,5α-THP as well as in GABAergic tonic currents and neuronal excitability caused by SI, but it had only a limited effect on the changes in the probability of presynaptic glutamate release. Overall, the results obtained in this work, together with those previously published, indicate that exposure of mice to SI during adolescence reduces neuronal excitability of DG granule cells, an effect that may be linked to the increased GABAergic tonic currents as a consequence of the sustained decrease in plasma and hippocampal levels of neurosteroids. All these changes may be consistent with cognitive deficits observed in animals exposed to such type of prolonged stres

    Wearing a Mask Shapes Interpersonal Space during COVID-19 Pandemic

    Get PDF
    Social distancing norms have been promoted after the COVID-19 pandemic. In this work, we tested interpersonal space (IPS) in 107 subjects through a reaching-comfort distance estimation task. In the main experiment, subjects had to estimate the comfort and reach space between an avatar wearing or not wearing a face mask. We found that IPS was greater between avatars not wearing a mask with respect to stimuli with the mask on, while reaching space was not modulated. IPS increment in the NoMask condition with respect to the Mask condition correlated with anxiety traits, as shown with the State-Trait Anxiety Inventory, rather than with transient aspects related to the pandemic situation. In the control experiment, the avatars with a mask were removed to further explore the conditioning effect provided by the presence of the facial protection in the main experiment. We found a significant difference comparing this condition with the same condition of the main experiment, namely, the distances kept between avatars not wearing a mask in the main experiment were greater than those between the same stimuli in the control experiment. This showed a contextual adaptation of IPS when elements related to the actual pandemic situation were relevant. Additionally, no significant differences were found between the control experiment and the Mask condition of the main experiment, suggesting that participants had internalized social distancing norms and wearing a mask has become the new normal. Our results highlight the tendency of people in underestimating the risk of contagion when in the presence of someone wearing a mask

    Sex-dependent changes of hippocampal synaptic plasticity and cognitive performance in C57BL/6J mice exposed to neonatal repeated maternal separation

    Get PDF
    The repeated maternal separation (RMS) is a useful experimental model in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND60. Patch-clamp recordings in hippocampal CA1 pyramidal neurons revealed a significant enhancement of GABAergic miniature IPSC (mIPSC) frequency and a decrease in the amplitude of glutamatergic mEPSCs in male mice exposed to RMS. Only a slight but significant reduction in the amplitude of GABAergic mIPSCs was observed in females exposed to RMS compared to the relative controls. A marked increase in long-term depression (LTD) at CA3-CA1 glutamatergic synapses and in the response to the CB1r agonist win55,212 were detected in RMS male but not female mice. An impaired spatial memory and a reduced preference for novelty were observed in males exposed to RMS but not in females. A single injection of -ethynyl estradiol at PND2 prevented the changes observed in RMS male mice, suggesting that estrogens may play a protective role early in life against the exposure to stressful conditions. Our findings strengthen the idea of a sex-dependent influence of RMS on long-lasting modifications in synaptic transmission, effects that may be relevant to cognitive performance

    Binge-like administration of alcohol mixed to energy drinks to male adolescent rats severely impacts on mesocortical dopaminergic function in adulthood: A behavioral, neurochemical and electrophysiological study

    Get PDF
    A growing body of evidence indicates that the practice of consuming alcohol mixed with energy drinks (ED) (AMED) in a binge drinking pattern is significantly diffusing among the adolescent population. This behavior, aimed at increasing the intake of alcohol, raises serious concerns about its long-term effects. Epidemiological studies suggest that AMED consumption might increase vulnerability to alcohol abuse and have a gating effect on the use of illicit drugs. The medial prefrontal cortex (mPFC) is involved in the modulation of the reinforcing effects of alcohol and of impulsive behavior and plays a key role in the development of addiction. In our study, we used a binge-like protocol of administration of alcohol, ED, or AMED in male adolescent rats, to mimic the binge-like intake behavior observed in humans, in order to evaluate whether these treatments could differentially affect the function of mesocortical dopaminergic neurons in adulthood. We did so by measuring: i) physiological sensorimotor gating; ii) voluntary alcohol consumption and dopamine transmission before, during, and after presentation of alcohol; iii) electrophysiological activity of VTA dopaminergic neurons and their sensitivity to a challenge with alcohol. Our results indicate that exposure to alcohol, ED, or AMED during adolescence induces differential adaptive changes in the function of mesocortical dopaminergic neurons and, in particular, that AMED exposure decreases their sensitivity to external stimuli, possibly laying the foundation for the altered behaviors observed in adulthood

    An activator of voltage-gated K+ channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1

    Get PDF
    Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery
    corecore