274 research outputs found

    Immuno-Modulatory Properties of a Quinolin-2-(1H)-on-3-Carboxamide Derivative: Relevance in Multiple Sclerosis

    Get PDF
    Background: We have recently released the structure of a class of quinolin-2-(1H)-on-3-carboxamide derivatives and among them; the drug A2 has the highest CB2 receptor selectivity. Objective: In this work we assessed the immuno-modulatory properties of A2 in lymphocytes isolated from peripheral blood of multiple sclerosis patients and healthy donors. Methods: Cell proliferative response was measured by 3H-thymidine incorporation, cell viability and apoptosis by trypan blue, annexin V staining and western blot. Cell activation was investigated by flow cytometry and molecular pathways by western blot. Results: A2 exerted anti-proliferative effects with down-regulation of TNF-α , IL-10 and Rantes in both cell types. No relevant changes were observed in cell viability between the two cell types. In cells from healthy subjects, A2 did not induce apoptosis, inhibited the cell cycle and similarly down-regulated in CD4+T cells the markers CD69, CD25, CD49d and CD54. Indeed, A2 also inhibited the phosphorylation of Akt, NF-kB, IKKα/β, ERK and blocked the expression of Cox-2 and CB2 receptor. Published patents also describe CB2 receptor agonists like purine derivatives. Differently, in cells from patients, A2 did not affect CD49d, while potently blocked CD54 expression. A2 inhibitory effects of Akt and Cox-2 expression were confirmed, whereas unchanged level of the CB2 receptor was observed in these cells. Conclusion: We reported similar effects of A2 in both cell types; however, a different mechanism of action might be suggested in cells from patients concerning cell activation and CB2 receptor expression. Overall, these data suggest an anti-inflammatory profile of A2 with potential implication in multiple sclerosis

    Thyrotropin modulates low density lipoprotein binding activity in FRTL-5 thyroid cells.

    Get PDF
    Abstract FRTL-5 cells possess high affinity low density lipoprotein (LDL) receptors which bind, internalize, and degrade LDL. When FRTL-5 cells are deprived of thyrotropin (TSH) the binding of LDL increases more than 2-fold. Upon addition of TSH, at a concentration of 1 x 10(-10) M or greater, LDL binding decreases rapidly and within 24 h reaches the level which is typical of FRTL-5 cells chronically stimulated by TSH. The data available suggest that TSH-dependent down-regulation of LDL receptor activity is exerted through a reduction of the number of active LDL receptors, with no change in affinity. It is unlikely that the synthesis of LDL receptors is impaired, since LDL receptor messenger RNA is not decreased by TSH. The effect of the hormone on LDL receptor activity can be mimicked by 8-Br-cAMP and is completely abolished by the protein synthesis inhibitor cycloheximide but not by actinomycin D. TSH regulation of LDL receptor activity is lost in v-ras Ki-transformed FRTL-5 cells (Ki Mol) which also have lost TSH dependence for adenylate cyclase activation and growth. However, 8-Br-cAMP decreases LDL binding in Ki Mol FRTL-5 cells. The reduced availability of LDL receptor in TSH-stimulated FRTL-5 cells may be related to the increased membrane fluidity (Beguinot, F., Beguinot, L., Tramontano, D., Duilio, C., Formisano, S., Bifulco, M., Ambesi-Impiombato, F. S., and Aloj, S. M. (1987) J. Biol. Chem. 262, 1575-1582) or may reflect increased degradation of LDL receptors. We propose that a lower cholesterol uptake is needed in an actively proliferating cell population, to increase the production of isoprenoids whether it be for cholesterol biosynthesis or for the synthesis of other compounds requiring isoprenoid precursors

    Role of the small GTPase Rab7 in the late endocytic pathway.

    Get PDF
    Rab7 is a small GTPase localized to the late endosomal compartment. Its function was investigated by overexpressing dominant negative or constitutively active mutants in BHK-21 cells. The effects of such overexpression on the internalization and/or degradation of different endocytic markers and on the morphology of the late endosomal compartment were analyzed. We observed a marked inhibition of the degradation of 125I-low density lipoproteins in cells transfected with the Rab7 dominant negative mutants while the rate of internalization was not affected. Moreover in these cells there was an accumulation of many small vesicles scattered throughout the cytoplasm. In contrast, overexpression of the activating mutants led to the appearance of atypically large endocytic structures and caused a dramatic change in the distribution of the cation-independent mannose 6-phosphate receptor. Our data indicate that the Rab7 protein in mammalian cells is present on a late endosomal compartment much larger than the compartment labeled by the cation-independent mannose 6-phosphate receptor. Rab7 also appears to play a fundamental role in controlling late endocytic membrane traffic
    • …
    corecore