50 research outputs found

    Active Specific Immunotherapy in the Management of Adenocarcinoma of the Pancreas

    Get PDF
    Active specific immunotherapy for pancreatic adenocarcinoma and subsequent immunohistochemical analysis of tumour tissue have not been previously reported. To date, the therapy of pancreatic adenocarcinoma has been largely unsuccessful. A patient treated with a therapeutic ‘cancer vaccine’ and the immunological impact on the primary tumour of this potential new therapy are described. To the authors’ knowledge, this is both the first patient to be treated with active specific immunotherapy for pancreatic adenocarcinoma and the first to be studied immunologically by flow cytometry and immunohistochemistry with an apparent positive clinical impact

    Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute

    Full text link
    On the occasion of the 50th anniversary since the beginning of the search for gravitational waves at the Max Planck Society, and in coincidence with the 25th anniversary of the foundation of the Albert Einstein Institute, we explore the interplay between the renaissance of general relativity and the advent of relativistic astrophysics following the German early involvement in gravitational-wave research, to the point when gravitational-wave detection became established by the appearance of full-scale detectors and international collaborations. On the background of the spectacular astrophysical discoveries of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann and his collaborators at the Max Planck Institute for Astrophysics in Munich became deeply involved in research related to such new horizons. At the end of the 1960s, Joseph Weber's announcements claiming detection of gravitational waves sparked the decisive entry of this group into the field, in parallel with the appointment of the renowned relativist Juergen Ehlers. The Munich area group of Max Planck institutes provided the fertile ground for acquiring a leading position in the 1970s, facilitating the experimental transition from resonant bars towards laser interferometry and its innovation at increasingly large scales, eventually moving to a dedicated site in Hannover in the early 1990s. The Hannover group emphasized perfecting experimental systems at pilot scales, and never developed a full-sized detector, rather joining the LIGO Scientific Collaboration at the end of the century. In parallel, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) had been founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified entity in the early 2000s and were central contributors to the first detection of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further archival research. A previous version appears as a chapter in the volume The Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and J. Renn (Boston: Birkhauser, 2020

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Pathogenic Intestinal Bacteria Enhance Prostate Cancer Development via Systemic Activation of Immune Cells in Mice

    Get PDF
    A role for microbes has been suspected in prostate cancer but difficult to confirm in human patients. We show here that a gastrointestinal (GI) tract bacterial infection is sufficient to enhance prostate intraepithelial neoplasia (PIN) and microinvasive carcinoma in a mouse model. We found that animals with a genetic predilection for dysregulation of wnt signaling, Apc[superscript Min/+] mutant mice, were significantly susceptible to prostate cancer in an inflammation-dependent manner following infection with Helicobacter hepaticus. Further, early neoplasia observed in infected Apc[superscript Min/+] mice was transmissible to uninfected mice by intraperitoneal injection of mesenteric lymph node (MLN) cells alone from H. hepaticus-infected mutant mice. Transmissibility of neoplasia was preventable by prior neutralization of inflammation using anti-TNF-α antibody in infected MLN donor mice. Taken together, these data confirm that systemic inflammation triggered by GI tract bacteria plays a pivotal role in tumorigenesis of the prostate gland.RO1CA108854National Institute of Environmental Health Sciences (Massachusetts Institute of Technology. Center for Environmental Health Sciences Pilot Project Award P30-ES002109

    Interaction Between Convection and Pulsation

    Get PDF

    Gravitational-Wave Research as an Emerging Field in the Max Planck Society: The Long Roots of GEO600 and of the Albert Einstein Institute

    No full text
    corecore