22 research outputs found

    The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions

    Get PDF
    Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks

    Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Get PDF
    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments

    Species richness and abundance of bats in fragments of the stational semidecidual forest, Upper ParanĂĄ River, southern Brazil

    No full text
    The Upper Paranå River floodplain is inserted in a region of the Mata Atlântica biome, which is a critical area to preserve. Due to the scarcity of researches about the chiropterofauna in this region, the present study investigated species richness and abundance of bats in remnants from the stational semidecidual forest of the Upper Paranå River, southern Brazil. Samplings were taken every month, from January to December 2006, using 32 mist nets with 8.0 x 2.5 m, resulting in 640 m²/h and totaling a capture effort of 87,040 m²/h. In order to estimate the species richness, the following estimators were employed Chao1 and Jack2. During the study, a total of 563 individuals belonging to 17 species (Artibeus planirostris, Artibeus lituratus, Carollia perspicillata, Platyrrhinus lineatus, Sturnira lilium, Artibeus fimbriatus, Myotis nigricans, Desmodus rotundus, Artibeus obscurus, Noctilio albiventris, Phylostomus discolor, Phylostomus hastatus, Chrotopterus auritus, Lasiurus ega, Chiroderma villosum, Pygoderma bilabiatum and Lasiurus blossevillii) were captured. The estimated richness curves tended to stabilize, indicating that most of the species were sampled. Captured species represented 10% of the taxa recorded in Brazil and 28% in Paranå State, revealing the importance of this area for the diversity of bats. These findings indicate the need to determine actions aiming to restrict human activities in these forest fragments, in order to minimize anthropogenic impacts on the chiropterofauna
    corecore