82 research outputs found

    An integrated network visualization framework towards metabolic engineering applications

    Get PDF
    Background Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. Results In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. Conclusions The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.This work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project ref. COMPETE FCOMP-01-0124-FEDER-015079 and the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The work of PV is funded by PhD grant ref. SFRH/BDE/51442/2011

    Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes

    Get PDF
    OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001). CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes

    Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    Get PDF
    <div><h3>Background</h3><p>The development of rice (<em>Oryza sativa</em>) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement.</p> <h3>Principal Findings</h3><p>Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of <em>Arabidopsis</em> seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant <em>cultivar</em> Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development.</p> <h3>Conclusions</h3><p>These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed.</p> </div

    Program design features that can improve participation in health education interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there have been reported benefits of health education interventions across various health issues, the key to program effectiveness is participation and retention. Unfortunately, not everyone is willing to participate in health interventions upon invitation. In fact, health education interventions are vulnerable to low participation rates. The objective of this study was to identify design features that may increase participation in health education interventions and evaluation surveys, and to maximize recruitment and retention efforts in a general ambulatory population.</p> <p>Methods</p> <p>A cross-sectional questionnaire was administered to 175 individuals in waiting rooms of two hospitals diagnostic centres in Toronto, Canada. Subjects were asked about their willingness to participate, in principle, and the extent of their participation (frequency and duration) in health education interventions under various settings and in intervention evaluation surveys using various survey methods.</p> <p>Results</p> <p>The majority of respondents preferred to participate in one 30–60 minutes education intervention session a year, in hospital either with a group or one-on-one with an educator. Also, the majority of respondents preferred to spend 20–30 minutes each time, completing one to two evaluation surveys per year in hospital or by mail.</p> <p>Conclusion</p> <p>When designing interventions and their evaluation surveys, it is important to consider the preferences for setting, length of participation and survey method of your target population, in order to maximize recruitment and retention efforts. Study respondents preferred short and convenient health education interventions and surveys. Therefore, brevity, convenience and choice appear to be important when designing education interventions and evaluation surveys from the perspective of our target population.</p

    Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor

    Get PDF
    A combination of culture-dependent and independent methods was used to study the co-existence of different sulfate-reducing bacteria (SRB) in an upflow anaerobic sludge bed reactor treating sulfate-rich wastewater. The wastewater was fed with ethanol as an external electron donor. Twenty six strains of SRB were randomly picked and isolated from the highest serial dilution that showed growth (i.e. 108). Repetitive enterobacterial palindromic polymerase chain reaction and whole cell protein profiling revealed a low genetic diversity, with only two genotypes among the 26 strains obtained in the pure culture. The low genetic diversity suggests the absence of micro-niches within the reactor, which might be due to a low spatial and temporal micro-heterogeneity. The total 16S rDNA sequencing of two representative strains L3 and L7 indicated a close relatedness to the genus Desulfovibrio. The two strains differed in as many as five physiological traits, which might allow them to occupy distinct niches and thus co-exist within the same habitat. Whole cell hybridisation with fluorescently labeled oligonucleotide probes was performed to characterise the SRB community in the reactor. The isolated strains Desulfovibrio L3 and Desulfovibrio L7 were the most dominant SRB, representing 30–35% and 25–35%, respectively, of the total SRB community. Desulfobulbus-like bacteria contributed for 20–25%, and the Desulfobacca acetoxidans-specific probe targeted approximately 15–20% of the total SRB. The whole cell hybridisation results thus revealed a consortium of four different species of SRB that can be enriched and maintained on a single energy source in a full-scale sulfidogenic reactor

    Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3(-/-) mice, but not wildtype mice.

    Get PDF
    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3(-/-) mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3(-/-)) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3(-/-) mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3(-/-) nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3(-/-) phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Endotoxaemia resulting from decreased serotonin tranporter (5-HTT) function: A reciprocal risk factor for depression and insulin resistance?

    No full text
    Depression and diabetes are serious diseases with an increasing global prevalence. Intriguingly, recent meta-analyses have highlighted an asymmetrical relationship between the two conditions as depressed patients were found to display a higher risk of developing type 2 diabetes than those individuals suffering from diabetes are to become depressed. Based on recent findings, we favor a hypothesis where by decreased peripheral serotonin (5-HT) transporter (5-HTT) function is a reciprocal risk factor for the co-morbidity of depression and diabetes, as it can trigger inflammatory pathogenetic mechanisms of both conditions. Higher intestinal levels of 5-HT and 5-HT3 receptor stimulation lead to increased intestinal permeability in 5-HTT deficient mice, which is viewed one of the most relevant animal models of depression. We hypothesize that this leakage of bacterial endotoxins can activate both central and peripheral Toll-like receptor 4 (TLR4), which inhibits insulin signaling and IRS1/PI3K/Akt and thus, contribute to the pathogenesis of diabetes and depression that are associated with this pathway. Antidepressant therapies, which also suppress intestinal 5-HTT, may have potentiating effects on the association between depression and diabetes. It is also of interest that high carbohydrate and fat intake ("cafeteria-type diet") increases intestinal 5-HT leading to TLR4 activation. Thus, endotoxaemia and inflammation owing to increased intestinal 5-HT may underpin the depression and diabetes association, where the risk of the latter pathology becomes particularly preeminent after the onset of depression and not vice versa. The evidence presented here shows the further investigation into peripheral mechanisms that linked diabetes to depression is clearly warranted

    Lasting downregulation of the lipid peroxidation enzymes in the prefrontal cortex of mice susceptible to stress-induced anhedonia.

    No full text
    Antioxidant enzymes and lipid peroxidation in the brain are involved in neuropsychiatric pathologies, including depression. 14- or 28-day chronic stress model induced a depressive syndrome defined by lowered reward sensitivity in C57BL/6J mice and changed gene expression of peroxidation enzymes as shown in microarray assays. We studied how susceptibility or resilience to anhedonia is related to lipid peroxidation in the prefrontal cortex (PFC). With 14-day stress, a comparison of the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and accumulation of malondialdehyde (MDA) revealed a decrease of the first two measures in susceptible, but not in resilient animals or in stressed mice chronically dosed with imipramine (7mg/kg/day). Acute stress elevated activity of CAT and SOD and dynamics of MDA accumulation in the PFC that was prevented by imipramine (30mg/kg). 28-day stress evoked anhedonia lasting two but not five weeks while behavioural invigoration was detected at the latter time point in anhedonic but not non-anhedonic mice; enhanced aggressive traits were observed in both groups. After two weeks of a stress-free period, CAT and SOD activity levels in the PFC were reduced in anhedonic animals; after five weeks, only CAT was diminished. Thus, in the present chronic stress depression paradigm, lasting alterations in brain peroxidation occur not only during anhedonia but also in the recovery period and are accompanied by behavioural abnormalities in mice. This mimics behavioural and neurochemical deficits observed in depressed patients during remission which could be used to develop remedies preventing their relapse
    • …
    corecore