128 research outputs found

    Time-dependent changes in gene expression induced by secreted amyloid precursor protein-alpha in the rat hippocampus

    Full text link
    Background: Differential processing of the amyloid precursor protein liberates either amyloid-ß, a causative agent of Alzheimer's disease, or secreted amyloid precursor protein-alpha (sAPPα), which promotes neuroprotection, neurotrophism, neurogenesis and synaptic plasticity. The underlying molecular mechanisms recruited by sAPPα that underpin these considerable cellular effects are not well elucidated. As these effects are enduring, we hypothesised that regulation of gene expression may be of importance and examined temporally specific gene networks and pathways induced by sAPPα in rat hippocampal organotypic slice cultures. Slices were exposed to 1 nM sAPPα or phosphate buffered saline for 15 min, 2 h or 24 h and sAPPα-associated gene expression profiles were produced for each time-point using Affymetrix Rat Gene 1.0 ST arrays (moderated t-test using Limma: p < 0.05, and fold change ± 1.15).Results: Treatment of organotypic hippocampal slice cultures with 1 nM sAPPα induced temporally distinct gene expression profiles, including mRNA and microRNA associated with Alzheimer's disease. Having demonstrated that treatment with human recombinant sAPPα was protective against N-methyl d-aspartate-induced toxicity, we next explored the sAPPα-induced gene expression profiles. Ingenuity Pathway Analysis predicted that short-term exposure to sAPPα elicited a multi-level transcriptional response, including upregulation of immediate early gene transcription factors (AP-1, Egr1), modulation of the chromatin environment, and apparent activation of the constitutive transcription factors CREB and NF-κB. Importantly, dynamic regulation of NF-κB appears to be integral to the transcriptional response across all time-points. In contrast, medium and long exposure to sAPPα resulted in an overall downregulation of gene expression. While these results suggest commonality between sAPPα and our previously reported analysis of plasticity-related gene expression, we found little crossover between these datasets. The gene networks formed following medium and long exposure to sAPPα were associated with inflammatory response, apoptosis, neurogenesis and cell survival; functions likely to be the basis of the neuroprotective effects of sAPPα.Conclusions: Our results demonstrate that sAPPα rapidly and persistently regulates gene expression in rat hippocampus. This regulation is multi-level, temporally specific and is likely to underpin the neuroprotective effects of sAPPα. © 2013 Ryan et al.; licensee BioMed Central Ltd

    The future of successful aging in Alaska

    Get PDF
    Background. There is a paucity of research on Alaska Natives and their views on whether or not they believe they will age successfully in their home and community. There is limited understanding of aging experiences across generations. Objective. This research explores the concept of successful aging from an urban Alaska Native perspective and explores whether or not they believe they will achieve a healthy older age. Design. A cultural consensus model (CCM) approach was used to gain a sense of the cultural understandings of aging among young Alaska Natives aged 50 years and younger. Results. Research findings indicate that aging successfully is making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol, but some of Alaska Natives do not feel they will age well due to lifestyle factors. Alaska Natives see the inability to age well as primarily due to the decrease in physical activity, lack of availability of subsistence foods and activities, and the difficulty of living a balanced life in urban settings. Conclusions. This research seeks to inform future studies on successful aging that incorporates the experiences and wisdom of Alaska Natives in hopes of developing an awareness of the importance of practicing a healthy lifestyle and developing guidelines to assist others to age well

    A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    Get PDF
    A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors

    Integrated HIV Testing, Malaria, and Diarrhea Prevention Campaign in Kenya: Modeled Health Impact and Cost-Effectiveness

    Get PDF
    Efficiently delivered interventions to reduce HIV, malaria, and diarrhea are essential to accelerating global health efforts. A 2008 community integrated prevention campaign in Western Province, Kenya, reached 47,000 individuals over 7 days, providing HIV testing and counseling, water filters, insecticide-treated bed nets, condoms, and for HIV-infected individuals cotrimoxazole prophylaxis and referral for ongoing care. We modeled the potential cost-effectiveness of a scaled-up integrated prevention campaign.We estimated averted deaths and disability-adjusted life years (DALYs) based on published data on baseline mortality and morbidity and on the protective effect of interventions, including antiretroviral therapy. We incorporate a previously estimated scaled-up campaign cost. We used published costs of medical care to estimate savings from averted illness (for all three diseases) and the added costs of initiating treatment earlier in the course of HIV disease.Per 1000 participants, projected reductions in cases of diarrhea, malaria, and HIV infection avert an estimated 16.3 deaths, 359 DALYs and 85,113inmedicalcarecosts.EarliercareforHIVinfectedpersonsaddsanestimated82DALYsaverted(toatotalof442),atacostof85,113 in medical care costs. Earlier care for HIV-infected persons adds an estimated 82 DALYs averted (to a total of 442), at a cost of 37,097 (reducing total averted costs to 48,015).Accountingfortheestimatedcampaigncostof48,015). Accounting for the estimated campaign cost of 32,000, the campaign saves an estimated 16,015per1000participants.Inmultivariatesensitivityanalyses,8316,015 per 1000 participants. In multivariate sensitivity analyses, 83% of simulations result in net savings, and 93% in a cost per DALY averted of less than 20.A mass, rapidly implemented campaign for HIV testing, safe water, and malaria control appears economically attractive

    Veterans walk to beat back pain: study rationale, design and protocol of a randomized trial of a pedometer-based Internet mediated intervention for patients with chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic back pain is a significant problem worldwide and may be especially prevalent among patients receiving care in the U.S. Department of Veterans Affairs healthcare system. Back pain affects adults at all ages and is associated with disability, lost workplace productivity, functional limitations and social isolation. Exercise is one of the most effective strategies for managing chronic back pain. Yet, there are few clinical programs that use low cost approaches to help patients with chronic back pain initiate and maintain an exercise program.</p> <p>Methods/Design</p> <p>We describe the design and rationale of a randomized controlled trial to assess the efficacy of a pedometer-based Internet mediated intervention for patients with chronic back pain. The intervention uses an enhanced pedometer, website and e-community to assist these patients with initiating and maintaining a regular walking program with the primary aim of reducing pain-related disability and functional interference. The study specific aims are: 1) To determine whether a pedometer-based Internet-mediated intervention reduces pain-related functional interference among patients with chronic back pain in the short term and over a 12-month timeframe. 2) To assess the effect of the intervention on walking (measured by step counts), quality of life, pain intensity, pain related fear and self-efficacy for exercise. 3) To identify factors associated with a sustained increase in walking over a 12-month timeframe among patients randomized to the intervention.</p> <p>Discussion</p> <p>Exercise is an integral part of managing chronic back pain but to be effective requires that patients actively participate in the management process. This intervention is designed to increase activity levels, improve functional status and make exercise programs more accessible for a broad range of patients with chronic back pain.</p> <p>Trial Registration Number</p> <p>NCT00694018</p

    Effects of Macromolecular Crowding on Protein Conformational Changes

    Get PDF
    Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of “test” proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI), adenylate kinase (AdK), orotidine phosphate decarboxylase (ODCase), Trp repressor (TrpR), hemoglobin, DNA β-glucosyltransferase, and Ap4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 Å radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20–44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration). Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues) and TrpR (98 residues)]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will serve as valuable guides for expected crowding effects on protein conformation changes inside cells

    Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

    Get PDF
    Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR) matched pair clinical isolates of C. albicans, we could not see consistent differences in the lipid profiles of AS and AR strains because they came from different patients and so in this study, we have used genetically related variant recovered from the same patient collected over a period of 2-years. During this time, the levels of fluconazole (FLC) resistance of the strain increased by over 200-fold. By comparing the lipid profiles of select isolates, we were able to observe gradual and statistically significant changes in several lipid classes, particularly in plasma membrane microdomain specific lipids such as mannosylinositolphosphorylceramides and ergosterol, and in a mitochondrial specific phosphoglyceride, phosphatidyl glycerol. Superimposed with these quantitative and qualitative changes in the lipid profiles, were simultaneous changes at the molecular lipid species levels which again coincided with the development of resistance to FLC. Reverse transcriptase-PCR of the key genes of the lipid metabolism validated lipidomic picture. Taken together, this study illustrates how the gradual corrective changes in Candida lipidome correspond to the development of FLC tolerance. Our study also shows a first instance of the mitochondrial membrane dysfunction and defective cell wall (CW) in clinical AR isolates of C. albicans, and provides evidence of a cross-talk between mitochondrial lipid homeostasis, CW integrity and azole tolerance

    Interactions of Cathinone NPS with Human Transporters and Receptors in Transfected Cells

    Get PDF
    Pharmacological assays carried out in transfected cells have been very useful for describing the mechanism of action of cathinone new psychoactive substances (NPS). These in vitro characterizations provide fast and reliable information on psychoactive substances soon after they emerge for recreational use. Well-investigated comparator compounds, such as methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and lysergic acid diethylamide, should always be included in the characterization to enhance the translation of the in vitro data into clinically useful information. We classified cathinone NPS according to their pharmacology at monoamine transporters and receptors. Cathinone NPS are monoamine uptake inhibitors and most induce transporter-mediated monoamine efflux with weak to no activity at pre- or postsynaptic receptors. Cathinones with a nitrogen-containing pyrrolidine ring emerged as NPS that are extremely potent transporter inhibitors but not monoamine releasers. Cathinones exhibit clinically relevant differences in relative potencies at serotonin vs. dopamine transporters. Additionally, cathinone NPS have more dopaminergic vs. serotonergic properties compared with their non-β-keto amphetamine analogs, suggesting more stimulant and reinforcing properties. In conclusion, in vitro pharmacological assays in heterologous expression systems help to predict the psychoactive and toxicological effects of NPS

    Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bowel symptoms are often considered an indication to perform colonoscopy to identify or rule out colorectal cancer or precancerous polyps. Investigation of bowel symptoms for this purpose is recommended by numerous clinical guidelines. However, the evidence for this practice is unclear. The objective of this study is to systematically review the evidence about the association between bowel symptoms and colorectal cancer or polyps.</p> <p>Methods</p> <p>We searched the literature extensively up to December 2008, using MEDLINE and EMBASE and following references. For inclusion in the review, papers from cross sectional, case control and cohort studies had to provide a 2×2 table of symptoms by diagnosis (colorectal cancer or polyps) or sufficient data from which that table could be constructed. The search procedure, quality appraisal, and data extraction was done twice, with disagreements resolved with another reviewer. Summary ROC analysis was used to assess the diagnostic performance of symptoms to detect colorectal cancer and polyps.</p> <p>Results</p> <p>Colorectal cancer was associated with rectal bleeding (AUC 0.66; LR+ 1.9; LR- 0.7) and weight loss (AUC 0.67, LR+ 2.5, LR- 0.9). Neither of these symptoms was associated with the presence of polyps. There was no significant association of colorectal cancer or polyps with change in bowel habit, constipation, diarrhoea or abdominal pain. Neither the clinical setting (primary or specialist care) nor study type was associated with accuracy.</p> <p>Most studies had methodological flaws. There was no consistency in the way symptoms were elicited or interpreted in the studies.</p> <p>Conclusions</p> <p>Current evidence suggests that the common practice of performing colonoscopies to identify cancers in people with bowel symptoms is warranted only for rectal bleeding and the general symptom of weight loss. Bodies preparing guidelines for clinicians and consumers to improve early detection of colorectal cancer need to take into account the limited value of symptoms.</p

    Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    Get PDF
    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii
    corecore