7 research outputs found

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Calcium mobilization via intracellular ion channels, store organization and mitochondria in smooth muscle

    Get PDF
    In smooth muscle, Ca2+ release from the internal store into the cytoplasm occurs via inositol trisphosphate (IP3R) and ryanodine receptors (RyR). The internal Ca2+ stores containing IP3R and RyR may be arranged as multiple separate compartments with various IP3R and RyR arrangements, or there may be a single structure containing both receptors. The existence of multiple stores is proposed to explain several physiological responses which include the progression of Ca2+ waves, graded Ca2+ release from the store and various local responses and sensitivities. We suggest that, rather than multiple stores, a single luminally-continuous store exists in which Ca2+ is in free diffusional equilibrium throughout. Regulation of Ca2+ release via IP3R and RyR by the local Ca2+ concentration within the stores explains the apparent existence of multiple stores and physiological processes such as graded Ca2+ release and Ca2+ waves. Close positioning of IP3R on the store with mitochondria or with receptors on the plasma membrane creates ‘IP3 junctions’ to generate local responses on the luminally-continuous store

    Rare CACNA1A mutations leading to congenital ataxia

    No full text
    Human mutations in the CACNA1A gene that encodes the pore-forming α1A subunit of the voltage-gated CaV2.1 (P/Q-type) Ca2+ channel cause multiple neurological disorders including sporadic and familial hemiplegic migraine, as well as cerebellar pathologies such as episodic ataxia, progressive ataxia, and early-onset cerebellar syndrome consistent with the definition of congenital ataxia (CA), with presentation before the age of 2 years. Such a pathological role is in accordance with the physiological relevance of CaV2.1 in neuronal tissue, especially in the cerebellum. This review deals with the report of the main clinical features defining CA, along with the presentation of an increasing number of CACNA1A genetic variants linked to this severe cerebellar disorder in the context of Ca2+ homeostasis alteration. Moreover, the review describes each pathological mutation according to structural location and known molecular and cellular functional effects in both heterologous expression systems and animal models. In view of this information in correlation with the clinical phenotype, we take into consideration different pathomechanisms underlying the observed motor dysfunction in CA patients carrying CACNA1A mutations. Present therapeutic management in CA and options for the development of future personalized treatment based on CaV2.1 dysfunction are also discussed.This work was funded by the Spanish Ministry of Science and Innovation, the State Research Agency (AEI, Agencia Estatal de Investigación), and FEDER Funds (Fondo Europeo de Desarrollo Regional): Grants RTI2018-094809-B-I00 to J.M.F.F. and CEX2018-000792-M through the “María de Maeztu” Programme for Units of Excellence in R&D to “Departament de Ciències Experimentals i de la Salut”. M.S. is supported by the Generalitat de Catalunya (PERIS SLT008/18/00194) and National Grant PI17/00101 from the National R&D&I Plan, cofinanced by the Instituto de Salud Carlos III (Subdirectorate-General for Evaluation and Promotion of Health Research) and European Regional Development Fund. M.I.-S. holds a “Juan de la Cierva-Incorporación” Fellowship funded by the Spanish Ministry of Science and Innovation

    Molecular Pathways of Mitochondrial Dysfunction in Neurodegeneration: the Paradigms of Parkinson's and Huntington's Diseases

    No full text

    Intracellular calcium channels and their modulators

    No full text
    corecore