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Chapter 11

Calcium Mobilization via Intracellular  

Ion Channels, Store Organization 

and Mitochondria in Smooth Muscle

John G. McCarron, Susan Chalmers, Calum Wilson, and Mairi E. Sandison

Abstract In smooth muscle, Ca2+ release from the internal store into the cytoplasm 

occurs via inositol trisphosphate (IP3R) and ryanodine receptors (RyR). The internal 

Ca2+ stores containing IP3R and RyR may be arranged as multiple separate compart-

ments with various IP3R and RyR arrangements, or there may be a single structure 

containing both receptors. The existence of multiple stores is proposed to explain 

several physiological responses which include the progression of Ca2+ waves, 

graded Ca2+ release from the store and various local responses and sensitivities. We 

suggest that, rather than multiple stores, a single luminally-continuous store exists 

in which Ca2+ is in free diffusional equilibrium throughout. Regulation of Ca2+ 

release via IP3R and RyR by the local Ca2+ concentration within the stores explains 

the apparent existence of multiple stores and physiological processes such as graded 

Ca2+ release and Ca2+ waves. Close positioning of IP3R on the store with mitochon-

dria or with receptors on the plasma membrane creates ‘IP3 junctions’ to generate 

local responses on the luminally-continuous store.

Keywords Smooth muscle • Calcium signalling • Calcium stores • IP3 receptors • 

Ryanodine receptors • Quantal calcium release • Mitochondria

 Introduction

Ca2+ regulates several smooth muscle functions including contraction, proliferation 

and the changes in muscle performance that accompanies disease [1]. The character-

istics of the Ca2+ signal (e.g. the amplitude, duration, frequency and location) deter-

mine the nature of the biological response. A major Ca2+ source in smooth muscle is 
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an internal storage compartment which accumulates Ca2+ via  sarco/endoplasmic 

reticulum Ca2+-ATPases (SERCA). Ca2+ is released from the store into the cytoplasm 

via the ligand-gated channel/receptor complexes, the inositol trisphosphate (IP3R) 

and ryanodine receptors. Release of Ca2+ via IP3R is activated by IP3 generated in 

response to many G-protein or tyrosine kinase-linked receptor activators including 

drugs (Fig. 11.1). RyR may be activated pharmacologically (e.g. caffeine), by Ca2+ 

influx from outside the cell in the process of Ca2+-induced Ca2+ release (CICR), or 

when the stores’s Ca2+ content exceeds normal physiological values, i.e. in ‘store 

overload’ [2–6]. Activation of either receptor allows diffusion of Ca2+ from the store 

to increase the cytoplasmic Ca2+ concentration ([Ca2+]c) from the resting value of 

~100 nM to ~1 μM for many seconds throughout the cell and briefly (e.g. 100 ms) to 

much higher values (e.g. 50 μM) in small parts of the cytoplasm.

 Physiological Functions Proposed to Be Explained 

by the Structure of the Store

The amplitude and duration of the Ca2+ signal depends on the quantity of Ca2+ available 

for release, which is determined in large part by the structural arrangement of the store. 

The store appears as an interconnected network of tubules [7] with a single lumen in 

which Ca2+ is in free diffusional equilibrium throughout (Fig. 11.2) [e.g. 8, 9]. However, 

considerable controversy persists about the stores structural and functional continuity 

or discontinuity. Rather than a store with a single lumen, multiple separate smaller Ca2+ 

storage units may exist (Fig. 11.2) [e.g. 7, 10–12]. Although the structure is unresolved, 

the arrangement of the store is proposed to account for several characteristics of Ca2+ 

Fig. 11.1 Receptor activation and generation of IP3 and Ca2+ release. Muscarinic receptors 

(mAChR3), phospholipase C (PLC) and IP3R may be co-localized to create junctions in which IP3 

acts as a highly localized signal by being rapidly delivered to IP3R. PIP2, phosphatidylinositol 

4,5-bisphosphate; DAG diacylglycerol

J.G. McCarron et al.
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signals, such as the graded concentration- dependence of IP3-mediated Ca2+ release, the 

variation in sensitivity in different parts of the cell to generate local responses and the 

progression of Ca2+ signals through the cell. For example, while Ca2+ entry via voltage-

dependent Ca2+ channels generates quite uniform rises in Ca2+ (Fig. 11.3; [13, 14]), 

Ca2+ release from internal stores may generate complex patterns, such as travelling 

spatial gradients of Ca2+ (‘Ca2+ waves’; Fig. 11.3). For Ca2+ waves to progress through 

the cell, sequential activation of IP3R [13], by Ca2+ itself, occur in a repeating positive 

feedback CICR- like process [15, 16], i.e. Ca2+ release from one IP3R activates neigh-

bouring receptors to progress the wave. An explanation put forward to explain wave 

movement, rather than there being a persistent Ca2+ release at one site on the cell, is that 

store is arranged as several stores along the length of the cell, each with a limited 

amount of Ca2+. Each store is activated and depleted in turn (Fig. 11.4a).

A discontinuous structure of the store has also been proposed to explain the graded 

IP3 concentration-dependent Ca2+ release process [17, 18]. Low concentrations of IP3 

release only part of the overall available Ca2+ content of the store [17, 19–22]. As the IP3 

concentration increases, a further release of Ca2+ occurs [reviewed 23]. Such a graded 

release seems incompatible with the positive feedback CICR- like facility at IP3R [24], 

which would be anticipated to fully deplete the store when activated. To explain graded 

Ca2+ release, the store has been proposed to assemble in multiple separate units, each 

endowed with a finite Ca2+ storage capacity and sensitivity to IP3 (Fig. 11.4b). At any 

given concentration of IP3 only some stores will be activated to release Ca2+ [17, 18, 25] 

(Fig. 11.4b). This same feature of the store may also explain the reported variations in 

sensitivity different parts of the cell to IP3 [19, 26, 27].

 Structure of the Ca2+ Stores

There are several different RyR and IP3R arrangements which may exist on each of 

the proposed separate stores to explain the various experimental observations. 

Indeed, the Ca2+ stores have been classified on the arrangement of IP3R and RyR 

and proposals for one, two, or more, stores with a variety of complex receptor 

Luminally-con�nuous store

Mul�ple separate stores

Fig. 11.2 Arrangement of the store. The store may be a single luminally-continuous structure with 

Ca2+in free diffusional equilibrium throughout (top) or a series of multiple separate elements (bottom)

11 Calcium Mobilization via Intracellular Ion Channels, Store Organization…
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arrangements have been made (Fig. 11.5). There may be multiple stores each con-

taining both IP3R and RyR [28–32], or there may be stores which contain only RyR 

and separate stores only IP3R [12, 28, 32–34] (e.g. basilar mesenteric or pulmonary 

arteries; Fig. 11.5i, ii). In other studies, there may be Ca2+ stores containing IP3R 

and RyR together on some stores along with other separate stores in the same cell 

with either IP3R alone (e.g. pulmonary artery and aorta [29, 35]; Fig. 11.5iii) or RyR 
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Fig. 11.3 Depolarization and IP3-evoked increases in [Ca2+]c. Depolarization (−70 mV to +10 mV; 

g), activated a voltage-dependent Ca2+ current (ICa; f) to evoke a relatively uniform rise in [Ca2+]c 

(b, d). In contrast, [Ca2+]c increases in response to and IP3-generating agonist began in one part of 

the cell and progressed from that site (b, d and expanded time base h). The [Ca2+]c images (b) are 

derived from the time points indicated by the corresponding numerals in c. [Ca2+]c changes in b are 

represented by colour; blue low and red/white high [Ca2+]c. Changes in the fluorescence ratio with 

time (d, h) are derived from 1 pixel lines (‘origin’ and regions 1–8 in a, right panel; drawn at a 

3 pixel width to facilitate visualization). (a) Left panel shows a bright field image of the cell; see 

also whole cell electrode (right side) and puffer pipette containing agonist (left side). The velocity 

of wave progression is shown in i for the data presented in (d, h). Summarized velocity data is 

presented (j n = 5). From McCarron et al. 2010 [13] with permission
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alone (e.g. mesenteric artery [30]; Fig. 11.5iv). Stores have also been differentiated 

by their sensitivity to the SERCA pump inhibitors cyclopiazonic acid (CPA) and 

thapsigargin. In A7r5 cells (a cell line derived from thoracic aorta tissue) there are 

stores containing RyR that are insensitive to thapsigargin and separate stores in the 

same cells (also with RyR) that are sensitive to thapsigargin [12]. In an alternative 

proposal for store arrangement in A7r5 cells, a thapsigargin-insensitive store with 

IP3R but not RyR may exist [36]. In murine bladder smooth muscle, three types of 

Ca2+ store are proposed: two sensitive to thapsigargin, one with IP3R and one with-

out, and a third store insensitive to IP3 and thapsigargin [37]. In tracheal myocytes 

three types of Ca2+ stores are proposed which were refilled by different pathways. 

Ca2+ influx through voltage-dependent Ca2+ channels and CPA sensitive pumps 

refilled 80 % of the IP3R-containing stores. The remaining 20 % were not refilled by 

CPA-sensitive pumps or Ca2+ influx through voltage-dependent Ca2+ channels and 

Fig. 11.4 Wave progression and store arrangement. (a) The store may function as a series of 

discontinuous compartments that are activated and depleted in turn to explain wave progression. 

(b) Separate stores with various sensitivities to IP3 are activated and depleted as the IP3 concentration 

(left-side) increases

11 Calcium Mobilization via Intracellular Ion Channels, Store Organization…
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neither was the RyR-containing store. Instead, thapsigargin depleted the CPA/

voltage- dependent Ca2+ channels insensitive IP3R store fully and the RyR store by 

more than 50 % [38]. These differences in refilling mechanisms of the stores are 

proposed to demonstrate pharmacologically distinct Ca2+ stores which play an 

important role in the generation of Ca2+signals in airway smooth muscle cells [38].

Thus, data from various functional studies suggest there may be structural dis-

continuities in the store and that different types of receptor arrangements on those 

stores exist. Proposals for stores which contain only IP3R or RyR exist as do propos-

als for stores with RyR and IP3R together and in combination with additional sepa-

rate stores in the same cells containing only either IP3R or RyR. The questions arise, 

why is such a diversity of stores and receptor arrangement required and do func-

tional experiments unambiguously reveal structural discontinuities in the store?

 Methods Used to Investigate Stores May Create 

the Appearance of Multiple Stores

It could be the case that the experimental conditions used to investigate the stores 

may contribute to the diversity of proposals on arrangement. In native cells, methods 

for studying Ca2+ store subcompartments are limited. The main experimental 

Multiple separate store

IP R3

RyR

(i)

(ii)

(iii)

(iv)

Fig. 11.5 Arrangement of RyR and IP3R on the store(s). There may be store with RyR (blue) alone 

or IP3R (red) alone (i), or stores with both receptors (ii) or a combination of the two (iii, iv). 

Although the cartoon shows the different proposed store receptor arrangements in the same cell, 

the proposed stores have been described for different cell types

J.G. McCarron et al.
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approach is to define the structural organisation of the Ca2+ stores from functional 

(Ca2+ response) data. To do this, the store is depleted typically via one receptor 

(RyR or IP3R) by repeated activation with a single concentration of either IP3 or 

caffeine under conditions which prevent store refilling with Ca2+. After depletion 

via one receptor (e.g. RyR), whether or not Ca2+ is available to be released via the 

other receptor (e.g. IP3R) is then determined. If depletion via one receptor abolishes 

Ca2+ release from the other, the receptors are suggested to be co-localized on a sin-

gle store and access a common Ca2+ source. However, if depletion of the stores from 

one receptor leaves the other receptor’s response largely unaffected, the two chan-

nels are suggested to be localized on different stores. With this approach, some 

investigations (e.g. on portal vein and pulmonary artery) have shown a single store 

containing both RyR and IP3R, since depletion of the Ca2+ store by caffeine (which 

activates RyR) prevented IP3-mediated Ca2+ release [31, 32, 39, 40]. On the other 

hand, other studies on pulmonary artery have suggested there may be separate stores 

for each receptor since depletion of the RyR-containing store did not abolish agonist- 

evoked IP3-mediated Ca2+ release and vice versa [41]. In yet other studies (e.g. portal 

vein, pulmonary artery and taenia caeci), one store may express RyR and IP3R and 

other stores, in the same cell, only IP3R [11, 35, 42]. This conclusion came from the 

finding that depletion of the IP3R-containing store abolished Ca2+ release via RyR, 

while depletion of the RyR-containing store did not abolish Ca2+ release via IP3R. 

In further studies in other cell types (mesenteric artery) and in our own investigations 

in colonic smooth muscle [43], some stores may express both RyR and IP3R while 

others only RyR [30, 43]. In this case, depletion of the RyR- containing store 

abolished Ca2+ release via IP3R, while depletion of the IP3R- containing store did not 

abolish Ca2+ release via RyR—a result apparently consistent with there being a store 

which contained RyR alone.

However, in our own later experiments examining the structure of the store 

[44–46] we found unexpectedly that the entire store appeared to be a single 

luminally- continuous entity rather than a series of separate stores. In these later 

experiments, to examine luminal continuity, the store was depleted at one small site in 

the cell by repetitively applying IP3 to a small (10 μm) region under conditions pre-

venting store refilling. Even though only a small site in the cell was activated, the store 

depleted throughout the cell [44]. This result suggested that Ca2+ was in free diffu-

sional equilibrium in the store (Fig. 11.6) i.e. a luminally-continuous store. In keeping 

with these findings, the IP3-sensitive store also could be refilled from one small site on 

the cell (Fig. 11.7); a result suggesting there was a single store in which Ca2+ was able 

to diffuse freely throughout.

Depletion of the RyR-sensitive store at one site also depleted the entire store 

[44, 46]. In this case the RyR-containing store was depleted by attaching a pipette 

containing ryanodine to one small site of the cell to deplete the store there. Caffeine 

was applied to the entire cell. If the RyR containing store comprised separate ele-

ments, depletion of one aspect of the store should not affect the Ca2+ available to be 

released in another area of the store. However, caffeine-evoked Ca2+ transients 

decreased uniformly throughout the cell [44, 46] suggesting that ryanodine, acting 

at one part of the cell, had depleted the entire store i.e. a single luminally-continuous 

store exists.

11 Calcium Mobilization via Intracellular Ion Channels, Store Organization…
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The question of whether there is a single store with luminal continuity or multiple 

stores has also been addressed in other cell types (HeLa, RBL, CHO) using a Ca2+ 

store-located green fluorescent protein (GFP) [47, 48]. Prolonged GFP photobleach-

ing in a small restricted region of the cell resulted in the disappearance of fluores-

cence throughout store, suggesting GFP could move freely around the store to be 

eventually photobleached. Short periods of photobleaching were followed by a 

rapid restoration of fluorescence by the diffusion of GFP from sites neighbouring 

the photobleached region [47, 49]. A single store with luminal continuity through-

out was also suggested by the diffusion of Ca2+ in pancreatic acinar cells [8]. 

Ca2+ -containing bath

a

b

c
Ca2+ -containing bathCa2+ -free bath

Photoylsis

site1

Photolysis

Site1

Photolysis

Site1

Photoylsis

site2

Photolysis

Site2

Patch

pipette

Patch

pipette

5 s3

2

1[C
a

2
+
] c

 (
F

/F
0
)

ca2+ ca2+ ca2+
ca2+

Fig. 11.6 Store luminal continuity:depletion of the IP3-sensitive Ca2+ store in a localized area 

depletes the entire store of Ca2+. (a) If the store was a series of luminal discontinuous elements 

(left) then Ca2+ release at one site would not alter the Ca2+ available for release from another. 
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a 10 μm diameter region, (photolysis site 1; bright spot in b left-hand panel; see also patch elec-

trode, left side) evoked Ca2+ transients (c). Results from photolysis site 1 are indicated by the 

magenta bar below the [Ca2+]c trace in c. When repositioned to photolysis site 2 (b; right hand 

panel) subsequent photolysis ~90 s later produced a [Ca2+]c increase (c). Photolysis site 2 is indi-

cated by the green line below the [Ca2+]c trace (c). In a Ca2+ free solution (containing EGTA (1 

mM) and MgCl2 (3 mM); blue bar above the [Ca2+]c trace) the [Ca2+]c increase evoked by IP3 at 

photolysis site 2 declined in amplitude as the store was depleted of Ca2+ (c). When the store content 

had been substantially reduced at photolysis site 2 (b) (as revealed by the smaller Ca2+ transients 

c) IP3 was liberated by photolysis at site 1 (b). Again as at photolysis site 2 the response was now 

almost abolished compared to control. On restoring external Ca2+ (c, right hand side) the Ca2+ 

increase evoked by IP3 at photolysis site 1 was restored towards control values. These results sug-

gest that the SR is luminally- continuous and within it Ca2+ is freely diffusible. [Ca2+]c measure-

ments were made from a 5 μm diameter circle at the photolysis site. Thus when photolysis occurred 

at photolysis site 1 [Ca2+]c, measurements were made from a 5 μm diameter circle at the photolysis 

site 1. When photolysis occurred at photolysis site 2, [Ca2+]c measurements were made from a 5 

μm diameter circle at the photolysis site 2. (b, c) These results were original published in McCarron 

& Olson 2008 [44]
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The Ca2+ store in the apical region was refilled with Ca2+ originating from a pipette 

attached to the opposite side of the cell on the basolateral membrane [see also 9]. 

Together, these experiments suggest the store is a luminally-continuous entity in 

which Ca2+ can diffuse freely throughout. How then does the appearance of multiple 

stores [43] occur on a single luminally-continuous store structure?

 Complex RyR and IP3R Regulation Characteristics 

and Apparent Store Configuration

IP3R and RyR are each regulated by the Ca2+concentration within the lumen of the 

store (‘luminal Ca2+ regulation’) [4, 45]. As the luminal Ca2+ concentration increases 

so does the activity of the store release channels [3–6]. Conversely, the activity of 
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by IP3 declined and was abolished as the store became depleted of Ca2+. When the Ca2+ containing 

patch electrode was subsequently sealed onto the cell in ‘cell-attached’ mode (a right hand panel; 

c red bar) there was no measurable increase in [Ca2+]c yet the Ca2+ increase to IP3 at the photolysis 
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through the store lumen to replenish the store. The position of the region of [Ca2+]c measurement 

is shown as a white circle in a, center panel. These results were original published in McCarron 

& Olson 2008 [44]
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RyR and IP3R each decrease as the store Ca2+ content declines. Ca2+ release evoked 

by IP3 or caffeine may substantially decline or stop as the store content falls, even 

when this store retains a significant residual quantity of Ca2+. To examine this 

possibility, a series of experiments were carried out in which the store was depleted 

of Ca2+ (Fig. 11.8). When the store had been ‘depleted’, as revealed by the inhibition 

of response to IP3 or caffeine, the concentration of each activator was increased and 

a substantial Ca2+ release occurred [44]. These experiments suggest that after appar-

ent depletion the store retained significant quantities of Ca2+ and that residual Ca2+ 

is available for release with increased concentrations of IP3 or caffeine.

Interpreting the amplitude of a Ca2+ response to a single repeatedly applied con-

centration of either IP3 or caffeine as the store content declines is problematic as the 

amplitude of the response depends (1) on the position of the activator concentration 

on the concentration-response relationship curve and (2) the store luminal Ca2+ con-

centration. The absence of a response to a single concentration of IP3 or caffeine, 

therefore, may not reflect an absence of available Ca2+ within the store but rather 
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each IP3 challenge was approximately 1 min. (b) Caffeine (10 mM; iii) indicated by pink (i) evoked 
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lished. These results were original published in McCarron & Olson 2008 [44]
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termination of channel activity by luminal regulation of the store release channels 

as the store Ca2+ content declines.

Luminal regulation may explain the appearance of multiple stores when pharma-

cological agents and functional data are used to define store subcompartments. Indeed, 

we reproduced data previously interpreted as various different store arrangements in a 

single smooth muscle cell type. For example, after depletion of the Ca2+ stores with 

caffeine and ryanodine, the response to IP3 disappeared (Fig. 11.9a). This result sug-

gest RyR and IP3R access a single Ca2+ pool. However, in the same cell type, after 

depletion of the Ca2+ stores with caffeine and ryanodine, when a higher concentration 

of IP3 (125 μM vs. 250 μM) was subsequently applied, a substantial Ca2+ increase 

occurred (Fig. 11.9b). This result suggests IP3R accesses a different Ca2+ pool from 

RyR. On the other hand, after the store had been apparently depleted of Ca2+ by IP3 

(at a concentration which produced a maximal response) a substantial response to 

caffeine persisted (Fig. 11.9c), suggesting there was a store which only contains RyR 

[30, 43]. In yet other experiments, in the same cell type, when the concentration of IP3 

used to deplete the store of Ca2+ was increased, no Ca2+ response to caffeine occurred 

i.e. the apparently separate stores for RyR disappeared (Fig. 11.9d).

Rather than there being various separate stores with different receptor arrange-

ments, these results suggests that partial depletion of the store terminates activity of 

the channels by luminal channel regulation by [Ca2+] within the store.

These results (Figs. 11.6, 11.8, 11.9) do not dispute the existence of multiple 

stores but suggest that care is required when interpreting results from functional 

data in terms of store structure. In some cells, multiple stores do exist unequivo-

cally. Different Ca2+concentrations have been measured in various regions of the 

store using recombinant aequorin [47], electron microscopic determination of Ca2+ 

content [50] or fluorescent indicators loaded into the cell [34], suggesting that dis-

continuities exist within the structures surrounding the lumen itself. The store [34] 

may adopt different configurations within the cell and components may even detach 

and reattach, so influencing the pattern and distribution of Ca2+ release channel [51]. 

In Purkinje neurons, for example, IP3R-expressing regions may separate off from 

other internal store elements [52]. Store compartments exist which accumulate and 

release Ca2+ but are luminally-discontinuous from the bulk of the store have been 

observed in cultured hippocampal dendrites [53]. Life cycle stage or prior experi-

mental conditions of the cell may influence the appearance of subcompartments. 

[Ca2+]c increases which persisted for at least 10 min, led to the breakdown of the 

Ca2+ store into subcompartments in rat basophilic leukaemia cells [49]. Store struc-

tural changes are also associated with fertilization and mitosis [54]. Fertilization 

leads to a reorganization of the store, measured as a slowing of the diffusion of 

membrane probes and luminal proteins, in sea urchin eggs [55, 56]. In mitosis, sig-

nificant Ca2+ store changes also occur, which include the structure itself fragmenting 

into subcompartments [57, 58].

Other structures within the cell such as Golgi, mitochondria, granules and the 

nucleus may also contribute to Ca2+ storage [59–63] and generate subregions which 

appear to have various Ca2+ concentrations, especially when lipophilic Ca2+ indicators 

are used to image the distribution of [Ca2+] through the cell.
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Fig. 11.9 Various apparent SR receptor arrangements. All the following experiments were per-

formed on the same cell type (colonic smooth muscle) (a) IP3R and RyR access a single Ca2+pool. 

Caffeine (10 mM by pressure ejection lower trace) evoked a rise in Ca2+. IP3-evoked Ca2+ increases 

(125 μM; ↑) were not significantly reduced by ryanodine (50 μM; open bar above the trace). 

Activation of RyR by caffeine (10 mM), in the continued presence of ryanodine, initially increased 

[Ca2+]c. A second application of caffeine to the same cell however some 90 s later, generated little 

increase in [Ca2+]c presumably because of SR store depletion; ryanodine’s effects on RyR require 

prior channel activation. The IP3 response was also subsequently inhibited (↑). Because the IP3-

evoked Ca2+ transient was not blocked by ryanodine alone (only after RyR activation with caf-

feine), IP3-mediated Ca2+ release did not activate RyR. IP3R and RyR may share a common Ca2+ 

store; this is depleted of Ca2+ by ryanodine, after activation of RyR by caffeine, to reduce the Ca2+ 

available for IP3-mediated Ca2+ release to occur. (b) IP3R accesses a separate Ca2+pool from RyR.
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 Graded Ca2+ Release, Ca2+ Waves and Local Ca2+ Events 

from a Luminally-Continuous Store

If the Ca2+ store in smooth muscle is indeed a single, luminally-continuous entity, 

how do the various physiological events (waves, graded release, local responses) 

previously explained with multiple separate stores occur?

Ca2+waves: Ca2+waves are the progressive movement of Ca2+ through the cell fol-

lowing Ca2+ release from the internal store. Using localized activation of IP3R, the 

forward movement of the Ca2+ wave was shown to arise from CICR at the IP3R [13, 

16]. The decline in [Ca2+]c—the back of the wave—occurred not because of depletion 

of separate stores but from a functional compartmentalization of the store which ren-

dered the site of IP3-mediated Ca2+ release—and only this site—refractory to IP3 after 

Ca2+ release . A localized feedback deactivation of IP3R produced by an increased 

[Ca2+]c caused the functional compartmentalization [16]. The deactivation of the IP3R 

was delayed in onset, compared with the time of the rise in [Ca2+]c and persisted 

(>30 s) even when [Ca2+]c had been restored to resting levels [13, 16]. This feedback 

deactivation ensures the wave’s progressive movement in a single direction [16].

Graded Ca2+release: There are several proposals for graded IP3-mediated Ca2+ 

release that do not require the presence of numerous stores with various sensitivities 

to IP3. Rather, at any given [IP3] the entire Ca2+ store is activated and releases a frac-

tion of its content, becoming partially depleted. Partial depletion may deactivate Ca2+ 

release [64, 65]. Raising the [IP3] reactivates IP3R to renew the Ca2+ release process. 

This proposal does not require multiple stores but a complex adaptive change in IP3R 

activity. Negative feedback processes operating either at the cytoplasmic or the lumi-

nal aspects of IP3R may explain the adaptive behaviour. In one proposal the binding 

of IP3 to IP3R may initially activate, then partially inactivate IP3R in a concentration-

dependent way to produce graded Ca2+ release [66–68]. To test this proposal we 

examined the time course of IP3R activation at a constant [IP3] but under conditions 

in which there was varying amplitude of Ca2+ release [45]. The latter was achieved 

by buffering the cytoplasmic Ca2+ concentration (BAPTA) or partial depletion of 

the store (Ca2+ free bath solution). If IP3 inactivated IP3R to prevent release, then at 

Fig. 11.9 (continued) Caffeine (1 mM; by pressure ejection, lower trace) evoked approximately 

reproducible increases in [Ca2+]c. IP3 (250 μM; ↑) also increased [Ca2+]c. Ryanodine (50 μM; open 

bar) inhibited caffeine-evoked [Ca2+]c increases by depletion of the SR. After the apparent deple-

tion of caffeine-sensitive Ca2+ store, IP3-evoked a substantial [Ca2+]c increase (in contrast to the 

results in a).(c) RyR accesses a different Ca2+pool from IP3R. Caffeine (10 mM) and photolyzed IP3 

(↑) increased [Ca2+]c. In a Ca2+ free solution (containing 1 mM EGTA and 3 mM MgCl2; blue bar 

above the trace) the IP3-evoked Ca2+ transient decrease as the store was depleted of Ca2+. Following 

depletion of the IP3-sensitive store, caffeine evoked a substantial Ca2+ transient. (d) RyR and IP3R 

access a single Ca2+pool. Caffeine (2 mM) and IP3 (125 μM) each evoked approximately reproduc-

ible increases in [Ca2+]c. Removal of external Ca2+ (and addition of 1 mM EGTA and 3 mM MgCl2; 

blue bar) reduced the IP3-evoked Ca2+ transient. Following depletion of the IP3-sensitive store, the 

caffeine-evoked [Ca2+]c transient was inhibited (in contrast to the results in c). Reintroduction of 

Ca2+ (red bar) restored the IP3- and caffeine-evoked Ca2+ transients towards control values. These 

results were original published in McCarron & Olson 2008 [44]
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constant [IP3], release should stop at approximately the same time regardless of the 

amplitude of the [Ca2+]c rise. However, as the amplitude of the [Ca2+]c rise declined 

(in either BAPTA or in Ca2+-free solution) the time course of release became more 

prolonged [45]. This result suggests that mechanisms other than IP3 inactivation of 

IP3R would appear responsible for terminating IP3-mediated Ca2+ release.

In another proposal, the sensitivity of IP3R to IP3 is controlled by the luminal 

[Ca2+] so that as the concentration of the ion within the store lumen falls so does IP3R 

activity [e.g. 65, 69]. For example, decreasing the store [Ca2+] to below 80 % of the 

steady-state level abolished IP3-mediated Ca2+release in rat uterine myoctes [70] 

[see also 65, 69]. However, it is unclear whether or not the control of IP3R activity by 

luminal Ca2+ operates over the store’s physiological Ca2+ concentration range. The 

threshold for luminal regulation to begin altering the activity of IP3R is depletion of 

the store by >70 % of the steady-state luminal Ca2+ concentration (500–600 μM; 

[71]) in HeLa cells. The store [Ca2+] must also be substantially depleted in hepato-

cytes (>45 or 95 %) [72, 73] and in A7r5 cells by >70 % [74] before IP3R sensitivity 

changes are detected. In each case, control of IP3R activity by Ca2+ binding to the 

luminal aspect of the receptor, is unlikely to explain ‘quantal’ Ca2+ release when store 

[Ca2+] exceeds 55, 5, or 30 % of the normal steady-state value respectively in these 

cells [72–74].

On the other hand, IP3R might not be controlled by luminal Ca2+ at all. Single 

channel IP3R activity, measured in planar lipid bilayers, increased when the [Ca2+] 

at the luminal aspect of the channel declined [75]. In the latter study a luminal [Ca2+] 

exceeding 1 mM inhibited IP3R activity [75] (see also [76]). In other studies in per-

meabilized cells (e.g. portal vein; [18] or hepatocytes; [77]), decreases in store 

[Ca2+] failed to reduce the sensitivity of IP3-mediated Ca2+ release or alter Ca2+ leak 

when pumps were blocked in permeabilized avian supraorbital nasal gland cells 

[78]. Together, these results suggest that regulation of IP3R by Ca2+ at the luminal 

aspect of the channel may, at best, operate over a limited range of store [Ca2+].

Our results (Fig. 11.8) [44–46] suggest that as the store content falls IP3R become 

less responsive to IP3. However, rather than luminal regulation being expressed 

from within the store at the luminal aspect of IP3R, detection of [Ca2+] within the 

store may lie at the cytoplasmic aspect of IP3R [45]. The Ca2+ current flowing 

through IP3R evokes further release by a positive feedback effect of the ion at the 

cytoplasmic aspect of the channel, i.e. a Ca2+-dependent positive feedback loop. 

Reduction of the store Ca2+ content reduces the Ca2+ current flowing through IP3R 

and will result in a falling positive feedback at the cytoplasmic aspect of IP3R until 

release eventually stops. Ca2+ release is renewed by an increased [IP3]. In this case, 

the co-incidental activation of several neighboring IP3Rs within a cluster offsets the 

declining IP3R Ca2+ current to renew positive feedback and Ca2+ release and accounts 

for graded IP3-mediated Ca2+ release.

Alternatively, the rise in cytoplasmic [Ca2+]c, which derives from the activity of 

IP3R, may itself inactivate the receptor [79–81]. However, if Ca2+-dependent inacti-

vation terminated release [16, 79] to explain the graded IP3-mediated Ca2+ release, 

the Ca2+ chelator BAPTA, would have been expected to have potentiated IP3-evoked 

[Ca2+]c increase; BAPTA decreased IP3-mediated Ca2+ release [45].
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Localized Ca2+responses IP3 is a rapidly diffusing messenger and IP3R are sub-

ject to positive feedback CICR on a single luminally-continuous entity, so how do 

highly-localized Ca2+ changes occur? In heart cells, the store is also a continuous 

network [82] in which Ca2+ can rapidly redistribute [83, 84] and positive feedback 

CICR occurs at RyR, yet highly localized Ca2+ release events occur. The highly 

localized responses arise in specialized domains formed by a junction of the store 

with the plasmalemma (‘peripheral couplings’) or the store and transverse 

(T)-tubules (‘Dyads’). A number of proteins accrue at these specialized store 

domains: the L-type channel dihydropyridine receptors of the plasmalemma and 

T-tubules; the RyRs of store; triadin and junctin, of the store membrane; and calse-

questrin (CSQ), the internal calcium binding protein [82]. The close coupling of 

dihydropyridine receptors and RyR provides control of Ca2+ release by Ca2+ influx. 

The quaternary complexes between triadin, junctin, RyR, and CSQ provides the 

luminal Ca2+ sensing capabilities that regulates RyR activity[85].

IP3-mediated Ca2+ signaling may also generate highly localized responses even 

though IP3 is a messenger that can diffuse quickly to evoke activity throughout the cell. 

To do this, certain receptors co-localize with IP3R to form a local signalling complex 

[86–89]. In cultured sympathetic neurons, although muscarinic and bradykinin recep-

tors each stimulate phospholipase C, only bradykinin receptors co- immunoprecipitate 

with, and activate, IP3R to evoke Ca2+ release [86]. The arrangement enables PLC 

activation by muscarinic and bradykinin receptors to evoke different cellular responses. 

In SH-SY5Y cells the positioning of IP3R near the plasma membrane provides a 

mechanism which may enable agonist activation, acting via IP3, to target specific 

types of cellular response i.e. by generating Ca2+ rises in specific regions of the cell 

[90]. The clustering of agonist-activated surface receptors in certain regions on the 

plasma membrane (e.g. the Escherichia coli chemotaxis receptor) may contribute fur-

ther, by providing areas with increased sensitivity to extracellular stimuli [91].

Smooth muscle also assembles IP3 Ca2+ release components into specialized Ca2+ 

domains [92] (Fig. 11.1). This conclusion came initially from the observation that Ca2+ 

waves, triggered by agonists applied to the entire cell, began consistently at the same 

site on successive activations in smooth muscle i.e. there appeared to be regions with 

preferential IP3-mediated Ca2+ release. Using centre of mass co- localization analysis of 

the distribution of the surface membrane receptors (for ACh) and IP3R, a small percent-

age (~10 %) of sites showed co-localization. Significantly, the extent of co-localization 

was greatest at the Ca2+ wave initiation site. At these sites of co-localization, wave 

initiation may arise from a preferential delivery of IP3 from mAChR3 activity to par-

ticular IP3R clusters to generate faster local [Ca2+]c increases. When the Ca2+ rise at the 

initiation site was rapidly and selectively attenuated (using photolysis of the caged Ca2+ 

buffer diazo-2) the Ca2+ wave shifted and initiated at a new site. Conversely, when a 

localized subthreshold ‘priming’ IP3 concentration was applied rapidly to regions dis-

tant from the initiation site, the wave initiation site shifted to the site of priming IP3 

release. These results indicate that Ca2+ waves initiate where the most rapid Ca2+ change 

occurs at sites in which there is a structural and functional coupling of ACh receptors 

and IP3R (Fig. 11.1). The coupling generates junctions in which IP3 acts as a highly 

localized signal by being rapidly and selectively delivered to IP3R.
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 Role of Mitochondria in Modulating Ca2+Signals

Away from the plasma membrane, IP3R activity in smooth muscle is also tightly 

regulated by mitochondria. Mitochondria have a well-developed Ca2+ uptake facility 

and may modulate bulk cytoplasmic Ca2+ signals [93–96] derived from Ca2+ entry 

and release [97]. Mitochondria also provide tight local control of Ca2+ release via 

IP3R [93, 94, 98] but Ca2+ influx via voltage-dependent Ca2+ channels or release via 

RyR appears to be less tightly controlled at a local level by mitochondria [93, 94].

Mitochondrial control of IP3R arises at IP3-mediated release sites. IP3-sensitive 

Ca2+ release initiates at discrete sites on the store that contain a few tens of IP3R 

from which the local increase in [Ca2+] is called a ‘puff’. Ca2+ puffs are spatially 

restricted events and of short duration but may interact and coalesce to generate a 

global release in Ca2+. Mitochondria are positioned close to IP3R and regulate activ-

ity of the channels [99]; inhibition of mitochondrial Ca2+ uptake attenuated the mag-

nitude of Ca2+ puffs [100]. Indeed mitochondrial Ca2+ uptake was rapid enough to 

influence Ca2+ communication within an IP3R cluster. Mitochondrial Ca2+ uptake 

appears to prevent the negative feedback effect of high [Ca2+]c on IP3R activity 

within a cluster to prolong Ca2+ release from the store [100]. As a consequence of 

the control at IP3R, mitochondrial Ca2+ uptake exerts a pronounced effect on IP3- 

mediated Ca2+ release throughout the cell [93, 94, 98, 101].

Mitochondria and IP3R appear to be close, and perhaps tethered, to allow 

mitochondrial Ca2+ uptake, ATP supply, ROS production and or redox/antioxidant 

control to influence IP3R activity. Conversely, mitochondrial division (required to 

maintain mitochondrial population health and allow cell proliferation) involves 

encircling of the dividing mitochondria by a store membrane tubule at the point of 

mitochondrial constriction [102]. During smooth muscle proliferation IP3R expres-

sion and activity are increased [103–105] and there is a marked switch in mitochon-

drial phenotype from stationary to highly motile [106]. Inhibiting either IP3R activity 

[104, 107] or mitochondrial motility and division [106, 108] inhibits smooth muscle 

proliferation. The interplay between mitochondria and IP3R in smooth muscle thus 

presents an interesting potential therapeutic avenue by which pathological smooth 

muscle proliferation in vascular disease may be targeted.
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