26 research outputs found
Avaliação de fluxos de calor e evapotranspiração pelo modelo SEBAL com uso de dados do sensor ASTER
O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo “Surface Energy Balance Algorithm for Land” (SEBAL), em uma imagem do sensor “Advanced Spaceborne Thermal Emission and Reflection Radiometer” (ASTER). As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.The objective of this study was to evaluate the efficiency of SEBAL model in estimating soil surface energy fluxes and daily evapotranspiration for a large area of irrigated rice farms, near the municipality of Paraíso do Sul, RS, Brazil, using data from ASTER sensor. The evaluated variables are important weather and climatic parameters for agrometeorological studies and rationalization of water use. The conventional methodologies for estimating these parameters generally present uncertainties, which increase when concern is in the spatial behavior of such parameters. The Surface Energy Balance Algorithm for Land (SEBAL) was applied in an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scene and the estimates were compared to micrometeorological data retrieved from a station located in the studied area. The most accurate modeled parameter estimatives were sensitive heat and evapotranspiration, and the one which presented the highest error was soil heat flux. The adopted methodology was able to reproduce surface energy fluxes for agrometeorological and crop yield studies
A global research priority agenda to advance public health responses to fatty liver disease
Background & aims
An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community.
Methods
Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy.
Results
The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement.
Conclusions
Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat.
Impact and implications
An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat