5,572 research outputs found
Inducing Language Networks from Continuous Space Word Representations
Recent advancements in unsupervised feature learning have developed powerful
latent representations of words. However, it is still not clear what makes one
representation better than another and how we can learn the ideal
representation. Understanding the structure of latent spaces attained is key to
any future advancement in unsupervised learning. In this work, we introduce a
new view of continuous space word representations as language networks. We
explore two techniques to create language networks from learned features by
inducing them for two popular word representation methods and examining the
properties of their resulting networks. We find that the induced networks
differ from other methods of creating language networks, and that they contain
meaningful community structure.Comment: 14 page
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Spontaneous transport barrier generation at the edge of a magnetically
confined plasma is investigated. To this end, a model of electrostatic
turbulence in three-dimensional geometry is extended to account for the impact
of friction between trapped and passing particles on the radial electric field.
Non-linear flux-driven simulations are carried out, and it is shown that
considering the radial and temporal variations of the neoclassical friction
coefficients allows for a transport barrier to be generated above a threshold
of the input power
Medium corrections in the formation of light charged particles in heavy ion reactions
Within a microscopic statistical description of heavy ion collisions, we
investigate the effect of the medium on the formation of light clusters. The
dominant medium effects are self-energy corrections and Pauli blocking that
produce the Mott effect for composite particles and enhanced reaction rates in
the collision integrals. Microscopic description of composites in the medium
follows the Dyson equation approach combined with the cluster mean-field
expansion. The resulting effective few-body problem is solved within a properly
modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a
Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and
spectra of light charged particles emerging from a heavy ion collision changes
in a significant manner in effect of the medium modification of production and
absorption processes.Comment: 16 pages, 6 figure
Benchmark generator for CEC 2009 competition on dynamic optimization
Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea
Disentanglement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy
We report on the high resolution studies of the temperature (T) dependence of
the q=0 phonon spectrum in the quasi one-dimensional charge density wave (CDW)
compound K0.3MoO3 utilizing time-resolved optical spectroscopy. Numerous modes
that appear below Tc show pronounced T-dependences of their amplitudes,
frequencies and dampings. Utilizing the time-dependent Ginzburg-Landau theory
we show that these modes result from linear coupling of the electronic part of
the order parameter to the 2kF phonons, while the (electronic) CDW amplitude
mode is overdamped.Comment: 4 pages, 3 figures + supplementary material, accepted for publication
in Phys. Rev. Let
Quasilinear hyperbolic Fuchsian systems and AVTD behavior in T2-symmetric vacuum spacetimes
We set up the singular initial value problem for quasilinear hyperbolic
Fuchsian systems of first order and establish an existence and uniqueness
theory for this problem with smooth data and smooth coefficients (and with even
lower regularity). We apply this theory in order to show the existence of
smooth (generally not analytic) T2-symmetric solutions to the vacuum Einstein
equations, which exhibit AVTD (asymptotically velocity term dominated) behavior
in the neighborhood of their singularities and are polarized or half-polarized.Comment: 78 page
Analysis of previous microscopic calculations for second state in C in terms of 3-alpha particle Bose-condensed state
The wave function of the second state of C which was obtained
long time ago by solving the microscopic 3 problem is shown to be
almost completely equivalent to the wave function of the 3 condensed
state which has been proposed recently by the present authors. This equivalence
of the wave functions is shown to hold in two cases where different effective
two-nucleon forces are adopted. This finding gives strong support for
interpreting the second state of C which is the key state for the
synthesis of C in stars ('Hoyle' state), and which is one of the typical
mysterious states in light nuclei, as a gas-like structure of three
particles, Bose-condensed into an identical s-wave function.Comment: revtex, 5 pages, 2 figures, submitted to Phys. Rev.
Combining Static Analysis and Test Generation for {C} Program Debugging
International audienceSoftware validation remains crucial in software development process. Traditionally viewed as separate domains, static and dynamic analysis have complementary strengths and weaknesses and can be both applied to program validation and verification. This paper presents our ongoing work on a tool prototype called SANTE (Static ANalysis and TEsting), implementing a combination of static analysis and structural program tetsting for detection of run-time errors in C programs. First, a static analysis tool (Frama-C) is called to generate alarms when it cannot ensure the absence of run-time errors. Second, these alarms guide a structural test generation tool (PathCrawler) trying to confirm alarms by activating bugs on some test cases. Our experiments on real-life software show that this combination can outperform the use of each technique independently
Robertson-Walker fluid sources endowed with rotation characterised by quadratic terms in angular velocity parameter
Einstein's equations for a Robertson-Walker fluid source endowed with
rotation Einstein's equations for a Robertson-Walker fluid source endowed with
rotation are presented upto and including quadratic terms in angular velocity
parameter. A family of analytic solutions are obtained for the case in which
the source angular velocity is purely time-dependent. A subclass of solutions
is presented which merge smoothly to homogeneous rotating and non-rotating
central sources. The particular solution for dust endowed with rotation is
presented. In all cases explicit expressions, depending sinusoidally on polar
angle, are given for the density and internal supporting pressure of the
rotating source. In addition to the non-zero axial velocity of the fluid
particles it is shown that there is also a radial component of velocity which
vanishes only at the poles. The velocity four-vector has a zero component
between poles
Alpha cluster condensation in 12C and 16O
A new -cluster wave function is proposed which is of the
-particle condensate type. Applications to C and O show
that states of low density close to the 3 resp. 4 -particle threshold
in both nuclei are possibly of this kind. It is conjectured that all
self-conjugate 4 nuclei may show similar features.Comment: 4 pages, 2 tables, 2 figure
- …