333 research outputs found

    Constraints on Brane Inflation and Cosmic Strings

    Full text link
    By considering simple, but representative, models of brane inflation from a single brane-antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the CMB anisotropies by WMAP including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane-antibrane attraction, values n_s < 1.02 are compatible with the data at 95 % confidence level. We are also able to constrain the volume of internal manifold (modulo factors dependent on the warp factor) and the value of the inflaton field to be less than 0.66M_P at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r < 2*10^-5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out G\mu > 6.5*10^-8 using just the TT, TE and EE power spectra.Comment: 11 pages, 3 figures, revtex4, typos corrected, references adde

    Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    Full text link
    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried interfaces, compared with all other approaches.Comment: 12 pages, 8 figure

    D-term inflation in non-minimal supergravity

    Get PDF
    D-term inflation is one of the most interesting and versatile models of inflation. It is possible to implement naturally D-term inflation within high energy physics, as for example SUSY GUTs, SUGRA, or string theories. D-term inflation avoids the η\eta-problem, while in its standard form it always ends with the formation of cosmic strings. Given the recent three-year WMAP data on the cosmic microwave background temperature anisotropies, we examine whether D-term inflation can be successfully implemented in non-minimal supergravity theories. We show that for all our choices of K\"ahler potential, there exists a parameter space for which the predictions of D-term inflation are in agreement with the measurements. The cosmic string contribution on the measured temperature anisotropies is always dominant, unless the superpotential coupling constant is fine tuned; a result already obtained for D-term inflation within minimal supergravity. In conclusion, cosmic strings and their r\^ole in the angular power spectrum cannot be easily hidden by just considering a non-flat K\"ahler geometry.Comment: 29 pages, 9 figures; minor changes to match publihed versio

    String Necklaces and Primordial Black Holes from Type IIB Strings

    Full text link
    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.Comment: 45 pages, 9 figures, LaTeX; published versio

    Textures and Semi-Local Strings in SUSY Hybrid Inflation

    Full text link
    Global topological defects may account for the large cold spot observed in the Cosmic Microwave Background. We explore possibilities of constructing models of supersymmetric F-term hybrid inflation, where the waterfall fields are globally SU(2)-symmetric. In contrast to the case where SU(2) is gauged, there arise Goldstone bosons and additional moduli, which are lifted only by masses of soft-supersymmetry breaking scale. The model predicts the existence of global textures, which can become semi-local strings if the waterfall fields are gauged under U(1)_X. Gravitino overproduction can be avoided if reheating proceeds via the light SU(2)-modes or right-handed sneutrinos. For values of the inflaton- waterfall coupling >=10^-4, the symmetry breaking scale imposed by normalisation of the power spectrum generated from inflation coincides with the energy scale required to explain the most prominent of the cold spots. In this case, the spectrum of density fluctuations is close to scale-invariant which can be reconciled with measurements of the power spectrum by the inclusion of the sub-dominant component due to the topological defects.Comment: 29 page

    Measuring NIR Atmospheric Extinction Using a Global Positioning System Receiver

    Full text link
    Modeling molecular absorption by Earth's atmosphere is important for a wide range of astronomical observations, including broadband NIR photometry and high-resolution NIR spectroscopy. Using a line-by-line radiative transfer approach, we calculate theoretical transmission spectra in the deep red optical (700 to 1050 nm) for Apache Point Observatory. In this region the spectrum is dominated by H2O, which is known to be highly variable in concentration on short timescales. We fit our telluric models to high-resolution observations of A stars and estimate the relative optical depth of H2O absorption under a wide range of observing conditions. We compare these optical depth estimates to simultaneous measurements of Precipitable Water Vapor (PWV) based on data from a Global Positioning System (GPS) receiver located at Apache Point. We find that measured PWV correlates strongly with the scaling of H2O absorption lines in our spectra, indicating that GPS-based PWV measurements combined with atmospheric models may be a powerful tool for the real-time estimation of total molecular absorption in broad NIR bands. Using photometric measurements from the Sloan Digital Sky Survey (SDSS) DR8 database we demonstrate that PWV biases the calibrated r-z colors and z-band fluxes of mid-M stars but not mid-G stars. While this effect is small compared to other sources of noise in the SDSS z-band observations, future surveys like the Large Synoptic Survey Telescope aim for higher precision and will need to take time-variable molecular transmission into account for the global calibration of NIR measurements of objects having strong spectral features at these wavelengths. Empirical calibrations based on PWV may be immediately applicable to ongoing efforts to make mmag differential measurements of M stars to detect transiting exoplanets.Comment: 19 pages, 9 figures. Accepted for publication in PAS

    Magnetogenesis from Cosmic String Loops

    Full text link
    Large-scale coherent magnetic fields are observed in galaxies and clusters, but their ultimate origin remains a mystery. We reconsider the prospects for primordial magnetogenesis by a cosmic string network. We show that the magnetic flux produced by long strings has been overestimated in the past, and give improved estimates. We also compute the fields created by the loop population, and find that it gives the dominant contribution to the total magnetic field strength on present-day galactic scales. We present numerical results obtained by evolving semi-analytic models of string networks (including both one-scale and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including the forces and torques on loops from Hubble redshifting, dynamical friction, and gravitational wave emission. Our predictions include the magnetic field strength as a function of correlation length, as well as the volume covered by magnetic fields. We conclude that string networks could account for magnetic fields on galactic scales, but only if coupled with an efficient dynamo amplification mechanism.Comment: 10 figures; v3: small typos corrected to match published version. MagnetiCS, the code described in paper, is available at http://markcwyman.com/ and http://www.damtp.cam.ac.uk/user/dhw22/code/index.htm

    Has the 'Fast-Track' referral system affected the route of presentation and/or clinical outcomes in patients with colorectal cancer?

    Get PDF
    Background: The aim of this study is to determine whether the 'Fast-Track' referral system has changed the route by which patients present with colorectal cancer (CRC) and whether the route of presentation has any effect on clinical outcome. Methods: A retrospective cohort study of patients diagnosed with CRC under the care of two consultant colorectal surgeons between April 2006 and December 2012. The route by which patients presented was categorised as Fast-Track (FT), non-Fast-Track (non-FT) or acute. Outcome variables were operative intent, disease stage and 2- and 5-year survival. Results: A total of 558 patients were identified. One hundred ninety-seven patients (35.3%) were referred as FT, 108 (19.4%) presented acutely and 253 patients (45.3%) presented via other routes (non-FT). Over the study period, the route of presentation did not change significantly (P=0.135). There was no significant difference between FT and non-FT groups in terms of the proportion of patients undergoing potentially curative surgery (70.6 vs 74.3%, P=0.092) or with node-negative disease (48.2 vs 52.2%, P=0.796) nor was there any difference in 2-year or 5-year survival (74.1 vs 73.9%, P=0.837 and 52.3 vs 53.8%, P=0.889, respectively). Patients who presented acutely were less likely to undergo curative resection, had more advanced disease and had worse 2- and 5-year survival. Conclusions: The Fast-Track referral system has not affected the route by which patients present with CRC nor has it had any effect on clinical outcomes. Alternative strategies are required if the desired improvement in outcomes is to be achieved

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph
    corecore