93 research outputs found

    The impact assessment of thermal pollution on subtidal sessile assemblages: a case study from Mediterranean rocky reefs

    Get PDF
    Coastal power plants generally use seawater as cooling fluid, discharging heated waters into the sea after the cooling process. The ensuing increase in seawater temperature could affect the marine biota in the nearby areas, causing alterations at different level of biological organization, from individuals to populations and assemblages. In the Mediterranean Sea, few attempts have been made to assess the effects of this point sources of thermal pollution, especially on rocky habitats. Here, we investigated the putative impact of a thermal effluent from one of the largest European coal-fired coastal power plants on sessile assemblages of subtidal rocky reefs. Sessile assemblages on rocky substrates were photographically sampled at one location near the effluent (I), and at two control locations (Cs) virtually unaffected by thermal discharge. An asymmetrical after-control impact experimental design was employed to test the hypothesis that the thermal discharge significantly modified sessile assemblages at I if compared to Cs. We detected significant differences in assemblages at I versus Cs, indicating a clear effect of the effluent on assemblage structure. Such differences were mostly due to shift in dominance among macroalgae between I and Cs, which likely depended on different tolerance limits of species to increased seawater temperature and other sources of disturbance associated to the effluent, such as increased sedimentation rates and water turbidity. Our findings stressed the need for further investigations of the impact of thermal effluents on marine communities, considering the potential synergistic effects of climate change especially in the Mediterranean Sea

    Best Practicable Aggregation of Species: a step forward for species surrogacy in environmental assessment and monitoring

    Get PDF
    The available taxonomic expertise and knowledge of species is still inadequate to cope with the urgent need for cost-effective methods to quantifying community response to natural and anthropogenic drivers of change. So far, the mainstream approach to overcome these impediments has focused on using higher taxa as surrogates for species. However, the use of such taxonomic surrogates often limits inferences about the causality of community patterns, which in turn is essential for effective environmental management strategies. Here, we propose an alternative approach to species surrogacy, the “Best Practicable Aggregation of Species” (BestAgg), in which surrogates exulate from fixed taxonomic schemes. The approach uses null models from random aggregations of species to minimizing the number of surrogates without causing significant losses of information on community patterns. Surrogate types are then selected in order to maximize ecological information. We applied the approach to real case studies on natural and human-driven gradients from marine benthic communities. Outcomes from BestAgg were also compared with those obtained using classic taxonomic surrogates. Results showed that BestAgg surrogates are effective in detecting community changes. In contrast to classic taxonomic surrogates, BestAgg surrogates allow retaining significantly higher information on species-level community patterns than what is expected to occur by chance and a potential time saving during sample processing up to 25% higher. Our findings showed that BestAgg surrogates from a pilot study could be used successfully in similar environmental investigations in the same area, or for subsequent long-term monitoring programs. BestAgg is virtually applicable to any environmental context, allowing exploiting multiple surrogacy schemes beyond stagnant perspectives strictly relying on taxonomic relatedness among species. This prerogative is crucial to extend the concept of species surrogacy to ecological traits of species, thus leading to ecologically meaningful surrogates that, while cost effective in reflecting community patterns, may also contribute to unveil underlying processes. A specific R code for BestAgg is provided

    Protection enhances community and habitat stability: Evidence from a Mediterranean marine protected area

    Get PDF
    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change

    Intra-Laboratory Calibration Exercise for Quantification of Microplastic Particles in Fine-Grained Sediment Samples: Special Focus on the Influence of User Experience

    Get PDF
    An intra-laboratory calibration to quantify microplastic in fine-grained marine sediments was performed with two objectives: (a) to determine the recovery rate of self-produced microplastics characterized by a size ranging from 220 µm to 5 mm and differing in color (pink, orange, gray, yellow, silver), shape (fragments, filaments, spheres, films), and chemical composition (polystyrene, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene, polypropylene, poly(methyl methacrylate)) artificially introduced into real samples; and (b) to analyze whether operator experience can be a key factor in the quality of the results. To answer this question, the same protocol was assigned to an experienced and an inexperienced operator. The results of this comparison are detailed in terms of root mean square and percent error. Possible strategies to increase the recovery rate are presented, and an ad hoc category, namely “glitter”, was created to adjust the results with respect to this unique type of microplastic usually ignored and excluded from the analysi

    The First Evidence of the Water Bioremediation Potential of Ficopomatus enigmaticus (Fauvel 1923): From Threat to Resource?

    Get PDF
    Each year, a staggering 700,000 tons of synthetic dyes are manufactured globally, leading to the release of dye-laden wastewater into aquatic systems. These synthetic dyes resist biodegradation, endangering human and environmental health. Since traditional wastewater treatments are basically unable to remove dyes, exploring the potential of alternative solutions, such as bioremediation, is crucial to reduce dye contamination in aquatic ecosystems. Ficopomatus enigmaticus (Fauvel 1923), listed as one of the 100 worst invasive species in Europe, is considered an invasive ecosystem engineer capable of causing economic and ecological losses. Despite this negative status, the literature suggests its positive contributions to aquatic ecosystems as habitat former and water bioremediator. However, existing evidence on the potential of F. enigmaticus to improve water quality is fragmented and lacks experimental data from laboratory tests. This study examined the potential of Ficopomatus reefs, both living and dead, to enhance water quality by removing contaminants, focusing on methylene blue (MB), one of the most common synthetic dyes. Bioaccumulation and bioadsorption were identified as key mechanisms for dye removal, supported by ATR-FTIR and microscopic analyses. Ficopomatus efficiently removed up to 80% of MB within 24 h. Bioaccumulation in the soft body accounted for 18% of the total removal, while complex adsorption phenomena involving carbonaceous, microalgal, and organic reef components accounted for 82%. Surprisingly, bioremediated solutions exhibited significant effects in ecotoxicological tests on bacteria, indicating the potential of F. enigmaticus to disrupt bacterial quorum sensing related to biofilm formation, and suggesting a possible antifouling action. This study underscores the intricate interplay between F. enigmaticus, water quality improvement, and potential ecological consequences, stressing the need for further investigation into its multifaceted role in aquatic ecosystems

    The Challenge of Planning Conservation Strategies in Threatened Seascapes: Understanding the Role of Fine Scale Assessments of Community Response to Cumulative Human Pressures

    Get PDF
    Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs) is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based) on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral) along 40 km of coast in the western Mediterranean (Ionian Sea) has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and \u3b2-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human exploitation of marine resources

    Increasing trammel mesh size reduces biomass removal, mitigates discards and increases economic revenue in artisanal fisheries

    Get PDF
    Small-scale fishing plays a major role in regional economies worldwide and, with a large number of small vessels involved, it provides employment and livelihood to coastal communities. Generally recognized as more selective than other fishing practices, small-scale fishery can nevertheless be subjected to high rates of discards of both non-target species and small-sized individuals, which in turn could lead to both decreased incomes for fishers and increased depletion of fish stocks. However, if the relationship between fish size and price has long been assessed, the effect of enhanced size-selectivity of fishing gears and consequent economic gains has been little investigated. This study, set in the Porto Cesareo Marine Protected Area (Italy, Ionian Sea), aimed at testing effective strategies to improve trammel net selectivity, reducing discards and maximizing the income for fishers. Differentmesh sizes (20, 22 and 24mm) trammel nets were employed. The study consisted in 72 fishing days from July 2012 to September 2013 and each day involved experimental fishing with the three mesh sizes. A total of 16008 specimens (103 species) were collected but the analysis focused on the 18 most common species in the area for a total of 12782 individuals. Mesh size trammel nets of 20 mm and 22 mm yielded most of the biomass, 324.8 and 321.5 kg respectively, while the 24 mm mesh yielded 280.7 kg. The 24 mm mesh, even if accounted for lower income compared to the 22 mm mesh (2383.9 € vs 2590.5 €, respectively), provided significant 50% reduction of discards compared to the 20 and 22 mm mesh. The use of 24 mm mesh size was found to be an effective strategy to reduce the number of discarded organisms and, consequently, the pressure exerted on local fish stocks with associated higher revenue for fishers. The results of this study demonstrated that trammel net selectivity can improve and support conservation measures and concurrently increase profitability of local fishery

    Cultivation of Gongolaria barbata (Fucales, Phaeophyceae) with a seaweed‐derived biostimulant in order to improve photophysiological fitness and promote fertility to advance the restoration of marine macroalgal forests

    Get PDF
    As a result of several anthropogenic factors, Cystoseira sensu lato forests have declined or become regionally extinct in many coastal regions of the Mediterranean. Given the low natural recovery of lost populations, research efforts have been encouraged to develop sustainable and efficient restoration of macroalgal forests on a large scale. By promoting growth and fertility of collected thallus branches under controlled laboratory conditions, the availability of seedlings for restoration could be ensured without jeopardizing natural populations. Here we investigated the effect of a commercial algal biostimulant (AlgatronCifoŽ) on the photophysiology, growth and fertility of Gongolaria barbata (Stackhouse) Kuntze (Fucales, Phaeophyceae). In a factorial laboratory experiment, two different temperatures (10 oC and 14 °C) and two culture media [i.e. seawater (SW) and Algatron (AT)] were tested. The photosynthetic performance of G. barbata doubled after three weeks of culture with AT, while it decreased by 25% when cultivated in SW. The highest photosynthetic performance and growth were achieved at 14oC with AT, where fertile receptacles also developed, followed by seedling settlements. The thalli cultured in AT had similar or better photosynthetic performance than the initial control thalli. AT-cultured thalli had a greater ability to quench energy via photochemical pathways (qP) than those from the SW, which on the contrary, had higher levels of non-photochemical responses (qN, NPQmax). This limited photosynthetic performance was probably linked to the higher P-limitation experienced under that treatment. The algal biostimulant enhanced the physiological performance and induced fertility of G. barbata, demonstrating its valorization potential and setting a new path for improved restoration applications

    The application of the Weight-Of-Evidence approach for an integrated ecological risk assessment of marine protected sites

    Get PDF
    The effective management of marine ecosystems in the face of growing anthropogenic pressures requires the integration of data from different ecological components. Holistic approaches to evaluate the ecological status of marine ecosystems are still scarce, likely due to the challenge of integrating the complex information from a variety of indicators. In this study, we provided an application of a quantitative Weight-Of-Evidence (WOE) model based on the Sediqualsoft ® software, combining environmental and biological data to assess ecological risk in soft-bottom habitats within Natura sites 2000 in the Northern Adriatic Sea (Mediterranean Sea). Here, the WOE approach combined three lines of evidence (LOE): chemical characterization (LOE1), ecotoxicological properties (LOE4), and benthic community status (LOE5). A separate hazard quotient was derived for each LOE prior to a weightedintegration into a synthetic WOE assessment. The chemical analysis of the sediments revealed concentrations of pollutants far lower the reference limits, except for As and Hg and for polycyclic aromatic hydrocarbons which determined a ‘Slight’ to ‘Severe’ chemical hazard in coastal sites. Ecotoxicological hazard was rated as ‘Absent ’ at all sampling stations, and the analysis of benthic communities indicated ‘undisturbed’ conditions for most sites. The WOE approach classified the overall ecological risk to be ‘Absent’ for offshore sites and ‘Slight’ in nearshore sites. Although results suggested a general low ecological risk, the potential for future risks is recognized, especially in coastal areas, due to well-known sediment pollution in the region. The application of the WOE approach may represent a valuable tool for managing marine protected sites, and to char acterize the overall ecological status of these areas and improve conservation strategies in highly anthropized environmental contexts

    Microbe-assisted seedling crop improvement by a seaweed extract to address fucalean forest restoration

    Get PDF
    In the Mediterranean, Cystoseira sensu lato (s.l.) (Phaeophyceae) forests have sharply declined and restoration measures are needed to compensate for the loss. Assisted regeneration through the outplanting of seedlings grown ex-situ has proven to be a sustainable option. Optimizing mesocosm culture can maximize survival of the most critical embryonic stages and reduce long-term maintenance costs. Host-microbiome interactions could also play a crucial role in seedling development and welfare. In this context, we aimed to advance a cultivation protocol that stimulates the growth and fitness of Ericaria amentacea (Phaeophyceae) seedlings and identify the associated microbial biofilm communities. Seedlings were cultured in 6 treatments [i.e., filtered seawater (SW, C, Control), von Stoch-enriched SW (VS), VS + algal extract (VSA), algal extract-enriched SW: A1< A2< A3]. After the field, A2 seedlings had the highest cover (1372 Âą 53.66 mm2), which was 1.8 and 1.9 times greater than in VS and VSA, respectively. The addition of the algal extract and nutrients significantly affected the structure and composition of the microbial community that shifted over time in each culture medium. We identified a treatment-specific microbial fingerprint. After the mesocosm phase, A2 was characterized by 4 unique taxa: Postechiella, Winogradskyella, Roseovarius and Arenibacter (Bacteria). Given the success of A2 seedlings, we propose the probiotic consortia candidates characterized by the unique treatment-taxa in conjunction with the shared taxon Psychroserpens (Bacteria, present in A1, A2, VSA, VS) and the reminder community. Within the holobiont concept, the effect of algal extract or nutrients on the algae and/or biofilm could have important consequences for tuning the overall interaction networks. Our study has shown that macroalgal restoration could benefit from both the use of commercial algal extract and tailored nutrient enrichment in ex-situ cultures and the identification of probiotic consortia candidates that promote seedling growth
    • …
    corecore