4,512 research outputs found
Quasi-periodic solutions of completely resonant forced wave equations
We prove existence of quasi-periodic solutions with two frequencies of
completely resonant, periodically forced nonlinear wave equations with periodic
spatial boundary conditions. We consider both the cases the forcing frequency
is: (Case A) a rational number and (Case B) an irrational number.Comment: 25 pages, 1 figur
Quasinormal Modes Beyond Kerr
The quasinormal modes (QNMs) of a black hole spacetime are the free, decaying
oscillations of the spacetime, and are well understood in the case of Kerr
black holes. We discuss a method for computing the QNMs of spacetimes which are
slightly deformed from Kerr. We mention two example applications: the
parametric, turbulent instability of scalar fields on a background which
includes a gravitational QNM, and the shifts to the QNM frequencies of Kerr
when the black hole is weakly charged. This method may be of use in studies of
black holes which are deformed by external fields or are solutions to
alternative theories of gravity.Comment: Proceedings of the Sant Cugat Forum on Astrophysics (2014). Session
on 'Gravitational Wave Astrophysics.' 7 page
Fertimetro, a Principle and Device to Measure Soil Nutrient Availability for Plants by Microbial Degradation Rates on Differently-Spiked Buried Threads
A novel patented method (PCT/IB2012/001157: Squartini, Concheri, Tiozzo, University of Padova) and the corresponding application devices, suitable to measure soil fertility, are presented. The availability or deficiency of specific nutrients for crops is assessed by monitoring the kinetics of progressive weakening of cotton or silk threads due to in situ microbial activity. The method is based on a nutrient-primed incremented substrate degradation principle. Threads are buried as is or pre-impregnated with N or P solutions, and the acceleration of the degradation rate for the N-supplemented or P-supplemented thread, in comparison to the untreated thread, is proportional to the lack of the corresponding nutrient in that soil. Tests were validated on corn crops in plots receiving increasing fertilizer rates in a historical rotation that has been established since 1962. The measurement carried out in May significantly correlated with the subsequent crop yields recorded in October. The analysis allows an early, inexpensive, fast, and reproducible self-assessment at field level to improve fertilization rates. The device is envisaged as a user-friendly tool for agronomy, horticulture, and any environmental applications where organic matter cycling, soil quality, and specific nutrients excess or deficiency are critical considerations
Full description of Benjamin-Feir instability of stokes waves in deep water
Small-amplitude, traveling, space periodic solutions -called Stokes waves- of the 2 dimensional gravity water waves equations in deep water are linearly unstable with respect to long-wave perturbations, as predicted by Benjamin and Feir in 1967. We completely describe the behavior of the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent is turned on. We prove in particular the conjecture that a pair of non-purely imaginary eigenvalues depicts a closed figure "8", parameterized by the Floquet exponent, in full agreement with numerical simulations. Our new spectral approach to the Benjamin-Feir instability phenomenon uses a symplectic version of Kato's theory of similarity transformation to reduce the problem to determine the eigenvalues of a 4 x 4 complex Hamiltonian and reversible matrix. Applying a procedure inspired by KAM theory, we block-diagonalize such matrix into a pair of 2x2 Hamiltonian and reversible matrices, thus obtaining the full description of its eigenvalues
Effets de l’adoption de la technique du microdosage d’engrais sur la disponibilite et l’accessibilite cerealiere des exploitations agricoles a base de mil et de sorgho au Mali
Cette étude examine l’effet de l’adoption de la technique de microdosage d’engrais sur l’autosuffisance céréalière des exploitations agricoles à base de mil et de sorgho au Mali. Des données ont été collectées au cours de deux campagnes agricoles, à partir des enquêtes auprès de 108 exploitations agricoles. Les résultats montrent que l’application de la technique de microdosage par les producteurs sur les cultures de mil et de sorgho permet d’obtenir des rendements plus élevés comparativement à l’ancienne pratique des producteurs. Les résultats montrent aussi que l’adoption de la technique à grande échelle par les agriculteurs contribue l’amélioration de la sécurité alimentaire par la couverture des besoins céréaliers des exploitations agricoles. Des taux de couverture autonome et apparente des besoins céréaliers supérieurs ont été obtenus en moyenne pour les deux campagnes agricoles (2013-2014 et 2014-2015) avec les exploitations agricoles pratiquant le microdosage d’engrais sur le mil et le sorgho, comparés à celles en pratique paysanne.Mots- clés : microdosage d’engrais, effets, sécurité alimentaire, exploitations agricoles, mil, sorgho, Mal
On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA
Newly formed black holes are expected to emit characteristic radiation in the
form of quasi-normal modes, called ringdown waves, with discrete frequencies.
LISA should be able to detect the ringdown waves emitted by oscillating
supermassive black holes throughout the observable Universe. We develop a
multi-mode formalism, applicable to any interferometric detectors, for
detecting ringdown signals, for estimating black hole parameters from those
signals, and for testing the no-hair theorem of general relativity. Focusing on
LISA, we use current models of its sensitivity to compute the expected
signal-to-noise ratio for ringdown events, the relative parameter estimation
accuracy, and the resolvability of different modes. We also discuss the extent
to which uncertainties on physical parameters, such as the black hole spin and
the energy emitted in each mode, will affect our ability to do black hole
spectroscopy.Comment: 44 pages, 21 figures, 10 tables. Minor changes to match version in
press in Phys. Rev.
LISA observations of massive black hole mergers: event rates and issues in waveform modelling
The observability of gravitational waves from supermassive and
intermediate-mass black holes by the forecoming Laser Interferometer Space
Antenna (LISA), and the physics we can learn from the observations, will depend
on two basic factors: the event rates for massive black hole mergers occurring
in the LISA best sensitivity window, and our theoretical knowledge of the
gravitational waveforms. We first provide a concise review of the literature on
LISA event rates for massive black hole mergers, as predicted by different
formation scenarios. Then we discuss what (in our view) are the most urgent
issues to address in terms of waveform modelling. For massive black hole binary
inspiral these include spin precession, eccentricity, the effect of high-order
Post-Newtonian terms in the amplitude and phase, and an accurate prediction of
the transition from inspiral to plunge. For black hole ringdown, numerical
relativity will ultimately be required to determine the relative quasinormal
mode excitation, and to reduce the dimensionality of the template space in
matched filtering.Comment: 14 pages, 2 figures. Added section with conclusions and outlook.
Matches version to appear in the proceedings of 10th Annual Gravitational
Wave Data Analysis Workshop (GWDAW 10), Brownsville, Texas, 14-17 Dec 200
Constraining properties of the black hole population using LISA
LISA should detect gravitational waves from tens to hundreds of systems
containing black holes with mass in the range from 10 thousand to 10 million
solar masses. Black holes in this mass range are not well constrained by
current electromagnetic observations, so LISA could significantly enhance our
understanding of the astrophysics of such systems. In this paper, we describe a
framework for combining LISA observations to make statements about massive
black hole populations. We summarise the constraints that LISA observations of
extreme-mass-ratio inspirals might be able to place on the mass function of
black holes in the LISA range. We also describe how LISA observations can be
used to choose between different models for the hierarchical growth of
structure in the early Universe. We consider four models that differ in their
prescription for the initial mass distribution of black hole seeds, and in the
efficiency of accretion onto the black holes. We show that with as little as 3
months of LISA data we can clearly distinguish between these models, even under
relatively pessimistic assumptions about the performance of the detector and
our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for
proceedings of 8th LISA Symposium; v2 minor changes for consistency with
accepted versio
- …