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Abstract Small-amplitude, traveling, space periodic solutions –called Stokes
waves– of the 2 dimensional gravity water waves equations in deep water
are linearly unstable with respect to long-wave perturbations, as predicted by
Benjamin and Feir in 1967. We completely describe the behavior of the four
eigenvalues close to zero of the linearized equations at the Stokes wave, as the
Floquet exponent is turned on.We prove in particular the conjecture that a pair
of non-purely imaginary eigenvalues depicts a closed figure “8”, parameterized
by the Floquet exponent, in full agreement with numerical simulations. Our
new spectral approach to the Benjamin-Feir instability phenomenon uses a
symplectic version of Kato’s theory of similarity transformation to reduce
the problem to determine the eigenvalues of a 4 × 4 complex Hamiltonian
and reversible matrix. Applying a procedure inspired by KAM theory, we
block-diagonalize such matrix into a pair of 2× 2 Hamiltonian and reversible
matrices, thus obtaining the full description of its eigenvalues.
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1 Introduction

Since the pioneering work of Stokes [47] in 1847, a huge literature has estab-
lished the existence of steady space periodic traveling waves, namely solutions
which look stationary in a moving frame. Such solutions are called Stokes
waves. A problem of fundamental importance in fluid mechanics regards their
stability/instability subject to long space periodic perturbations. In 1967 Ben-
jamin and Feir [6,7] discovered, with heuristic arguments, that a long-wave
perturbation of a small amplitude space periodic Stokes wave is unstable;
see also the the independent results by Lighthill [30] and Zakharov [50,52]
and the survey [53] for an historical overview. This phenomenon is nowadays
called “Benjamin-Feir” –or modulational– instability, and it is supported by
an enormous amount of physical observations and numerical simulations, see
e.g. [1,18,19,35] and references therein.

It took almost thirty years to get the first rigorous proof of the Benjamin-
Feir instability for the water waves equations in two dimensions, obtained by
Bridges-Mielke [12] in finite depth, and fifty-five years for the infinite depth
case, proved last year by Nguyen-Strauss [43].

The problem is mathematically formulated as follows. Consider the pure
gravitywaterwaves equations for a bidimensional fluid in deepwater and a 2π -
periodic Stokeswave solutionwith amplitude 0 < ε � 1. The linearizedwater
waves equations at the Stokeswaves are, in the inertial reference framemoving
with the speed cε of the Stokes wave, a linear time independent system of the
form ht = Lεh whereLε is a linear operator with 2π -periodic coefficients, see
(2.13)1. The operatorLε possesses the eigenvalue 0 with algebraicmultiplicity
four due to symmetries of the water waves equations (that we describe in the
next section). The problem is to prove that ht = Lεh has solutions of the

1 TheoperatorLε in (2.13) is actually obtained conjugating the linearizedwaterwaves equations
in the Zakharov formulation via the “good unknown of Alinhac” (2.10) and the Levi-Civita
(2.12) invertible transformations.
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form h(t, x) = Re
(
eλt eiμxv(x)

)
where v(x) is a 2π -periodic function, μ in

R (called Floquet exponent) and λ has positive real part, thus h(t, x) grows
exponentially in time. By Bloch-Floquet theory, such λ is an eigenvalue of the
operator Lμ,ε := e−iμx Lε eiμx acting on 2π -periodic functions.

The main result of this paper provides the full description of the four eigen-
values close to zero of the operator Lμ,ε when ε and μ are small enough, see
Theorem 2.3, thus concluding the analysis started in 1967 by Benjamin-Feir.
We first state the following result which focuses on the Benjamin-Feir unstable
eigenvalues.

Along the paper we denote by r(εm1μn1, . . . , εmpμn p) a real analytic func-
tion fulfilling for some C > 0 and ε, μ sufficiently small, the estimate
|r(εm1μn1, . . . , εmpμn p)| ≤ C

∑p
j=1 |ε|m j |μ|n j .

Theorem 1.1 There exist ε1, μ0 > 0 and an analytic function μ : [0, ε1) →
[0, μ0), of the form μ(ε) = 2

√
2ε(1 + r(ε)), such that, for any ε ∈ [0, ε1),

the operator Lμ,ε has two eigenvalues λ±1 (μ, ε) of the form
⎧
⎪⎪⎨

⎪⎪⎩

1
2 iμ+ i r(με2, μ2ε, μ3)± μ

8

√
8ε2

(
1+ r0(ε, μ)

)− μ2
(
1+ r ′0(ε, μ)

)
, ∀μ ∈ [0, μ(ε)) ,

1
2 iμ(ε)+ i r(ε3) , μ = μ(ε) ,

1
2 iμ+ i r(με2, μ2ε, μ3)± i μ

8

√
μ2

(
1+ r ′0(ε, μ)

)− 8ε2
(
1+ r0(ε, μ)

)
, ∀μ ∈ (μ(ε), μ0) .

(1.1)
The function 8ε2

(
1 + r0(ε, μ)

) − μ2
(
1 + r ′0(ε, μ)) is > 0, respectively < 0,

provided 0 < μ < μ(ε), respectively μ > μ(ε).

Let us make some comments on the result.
1. According to (1.1), for values of the Floquet parameter 0 < μ < μ(ε)

the eigenvalues λ±1 (μ, ε) have opposite non-zero real part. Asμ tends toμ(ε),
the two eigenvalues λ±1 (μ, ε) collide on the imaginary axis far from 0 (in the
upper semiplane Im(λ) > 0), along which they keep moving for μ > μ(ε),
see Fig. 1. For μ < 0 the operator Lμ,ε possesses the symmetric eigenvalues

λ±1 (−μ, ε) in the semiplane Im(λ) < 0.
2. Theorem 1.1 proves the long-standing conjecture that the unstable eigen-

values λ±1 (μ, ε) depict a complete figure “8” as μ varies in the interval
[−μ(ε), μ(ε)], see Fig. 1. Forμ ∈ [0, μ(ε)]we obtain the upper part of the fig-
ure “8”, which iswell approximated by the curvesμ 	→ (±μ

8

√
8ε2 − μ2, 1

2μ),
in accordance with the numerical simulations by Deconinck-Oliveras [19].
For μ ∈ [μ(ε), μ0] the purely imaginary eigenvalues are approximated by

i μ
2 (1±1

4

√
μ2 − 8ε2). Thehigher order corrections of the eigenvaluesλ±1 (μ, ε)

in (1.1), provided by the analytic functions r0(ε, μ), r ′0(ε, μ), are explicitly
computable. Theorem 1.1 is the first rigorous proof of the “Benjamin-Feir fig-
ure 8”, not only for the water waves equations, but also in anymodel exhibiting
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Fig. 1 Traces of the
eigenvalues λ±1 (μ, ε) in the
complex λ-plane at fixed
|ε| � 1 as μ varies. For
μ ∈ (0, μ(ε)) the
eigenvalues fill the portion of
the 8 in {Im(λ) > 0} and for
μ ∈ (−μ(ε), 0) the
symmetric portion in
{Im(λ) < 0}

modulational instability, that we quote at the end of this introduction (for the
focusing 1d NLS equation Deconinck-Upsal [20] showed the presence of a
figure “8” for elliptic solutions, exploiting the integrable structure of the equa-
tion).

3. Nguyen-Strauss result in [43] describes the portion of unstable eigen-
values very close to the origin, namely the cross amid the “8”. Formula (1.1)
prolongs these local branches of eigenvalues far from the bifurcation, until they
collide again on the imaginary axis. Note that as 0 < μ � ε the eigenvalues
λ±1 (μ, ε) in (1.1) have the same asymptotic expansion given in Theorem 1.1
of [43].

4. The eigenvalues (1.1) are not analytic in (μ, ε) close to the value (μ(ε), ε)

where λ±1 (μ, ε) collide at the top of the figure “8” far from 0 (clearly they are
continuous). In previous approaches the eigenvalues are a priori supposed to
be analytic in (μ, ε), and that restricts their validity to suitable regimes. We
remark that (1.1) are the eigenvalues of the 2× 2 matrix U given in Theorem
2.3, which is analytic in (μ, ε).

5. In Theorem 2.3 we actually prove the expansion of the unstable
eigenvalues of Lμ,ε for any value of the parameters (μ, ε) in a rectangle
[0, μ0) × [0, ε0). The analytic curve μ(ε) = 2

√
2ε(1 + r(ε)), tangent at

ε = 0 to the straight line μ = 2
√
2ε divides such rectangle in the “unstable”

region where there exist eigenvalues of Lμ,ε with non-trivial real part, from
the “stable” one where all the eigenvalues of Lμ,ε are purely imaginary, see
Fig. 2.
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Fig. 2 The blue line is the
analytic curve defined
implicitly by
8ε2

(
1+ r0(ε, μ)

)− μ2(1+
r ′0(ε, μ)) = 0. For values of
μ below this curve, the two
eigenvalues λ±1 (μ, ε) have
opposite real part. For μ

above the curve, λ±1 (μ, ε)

are purely imaginary

6. For larger values of the Floquet parameterμ, due to Hamiltonian reasons,
the eigenvalues will remain on the imaginary axis until the Floquet exponent
μ reaches values close to the next “collision” between two other eigenvalues
of L0,μ. For water waves in infinite depth this value is close to μ = 1/4 and
corresponds to eigenvalues close to i 3/4. These unstable eigenvalues depict
ellipse-shaped curves, called islands, that have been described numerically in
[19] and supported by formal expansions in ε in [18], see also [1].

7. In Theorem 1.1 we have described just the two unstable eigenvalues of
Lμ,ε close to zero. There are also two larger purely imaginary eigenvalues of
order O(

√
μ), see Theorem 2.3. We remark that our approach describes all

the eigenvalues of Lμ,ε close to 0 (which are 4).
Any rigorous proof of the Benjamin-Feir instability has to face the dif-

ficulty that the perturbed eigenvalues bifurcate from the defective eigenvalue
zero. BothBridges-Mielke [12] (see also the preprint byHur-Yang [28] in finite
depth) and Nguyen-Strauss [43], reduce the spectral problem to a finite dimen-
sional one, here a 4 × 4 matrix, and, in a suitable regime of values of (μ, ε),
prove the existence of eigenvalues with non-zero real part. The paper [12],
dealing with water waves in finite depth, bases its analysis on spatial dynam-
ics and a Hamiltonian center manifold reduction, as [28]. Such approach fails
in infinite depth (we quote however [29] for an analogue in infinite depthwhich
carries most of the properties of a center manifold). The proof in [43] is based
on a Lyapunov-Schmidt decomposition and applies also to the infinite depth
case.

Our approach is completely different. Postponing its detailed description
after the statement of Theorem 2.3, we only anticipate some of its main ingre-
dients. The first one is Kato’s theory of similarity transformations [34, II-§4].
This method is perfectly suited to study splitting of multiple isolated eigen-
values, for which regular perturbation theory might fail. It has been used,
in a similar context, in the study of infinite dimensional integrable systems
[5,33,36,40].
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In this paper we implement Kato’s theory for the complex operators Lμ,ε

which have an Hamiltonian and reversible structure, inherited by the Hamilto-
nian [17,51] and reversible [4,8,11] nature of the water waves equations. We
show how Kato’s theory can be used to prolong, in an analytic way, a sym-
plectic and reversible basis of the generalized eigenspace of the unperturbed
operator L0,0 into a (μ, ε)-dependent symplectic and reversible basis of the
corresponding invariant subspace ofLμ,ε . Thus the restriction of the canonical
complex symplectic form to this subspace, is represented, in this symplectic
basis, by the constant symplectic matrix J4 defined in (3.23), which is inde-
pendent of (μ, ε). This feature simplifies considerably perturbation theory.

In this way the spectral problem is reduced to determine the eigenvalues
of a 4 × 4 matrix, which depends analytically in μ, ε and it is Hamiltonian
and reversible. These properties imply strong algebraic features on the matrix
entries, for which we provide detailed expansions. Next, inspired by KAM
ideas, instead of looking for zeros of the characteristic polynomial of the
reduced matrix (as in the periodic Evans function approach [14,28] or in [26,
43]), we conjugate it to a block-diagonal matrix whose 2× 2 diagonal blocks
are Hamiltonian and reversible. One of these two blocks has the eigenvalues
given by (1.1), proving the Benjamin-Feir instability figure “8” phenomenon.

Let us mention that modulational instability has been studied also for a
variety of approximate water waves models, such as KdV, gKdV, NLS and
the Whitham equation by, for instance, Whitham [49], Segur, Henderson,
Carter and Hammack [46], Gallay and Haragus [24], Haragus and Kapitula
[25], Bronski and Johnson [14], Johnson [32], Hur and Johnson [26], Bron-
ski, Hur and Johnson [13], Hur and Pandey [27], Leisman, Bronski, Johnson
and Marangell [37]. Also in these approximate models numerical simulations
predict a figure “8” similar to that in Fig. 1 for the bifurcation of the unsta-
ble eigenvalues close to zero. However, in none of these approximate models
(except for the integrable NLS in [20]) the complete picture of the Benjamin-
Feir instability has been rigorously proved so far. We expect that the approach
developed in this paper could be applicable for such equations as well, and
also to include the effects of surface tension in water waves equations (see e.g.
[1]).

To conclude this introduction, wemention the nonlinearmodulational insta-
bility result of Jin, Liao, and Lin [31] for several approximate water waves
models and the preprint by Chen and Su [16] for Stokes waves in deep water.
For nonlinear instability results of traveling solitary water waves decaying at
infinity on R (not periodic) we quote [45] and reference therein.
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2 The full water waves Benjamin-Feir spectrum

In order to give the complete statement of our spectral result, we begin with
recapitulating somewell known facts about the pure gravity water waves equa-
tions.

The water waves equations and the Stokes waves. We consider the Euler
equations for a 2-dimensional incompressible, inviscid, irrotational fluid under
the action of gravity. The fluid fills the region Dη := {(x, y) ∈ T× R :
y < η(t, x)}, T := R/2πZ, with infinite depth and space periodic boundary
conditions. The irrotational velocity field is the gradient of a harmonic scalar
potential � = �(t, x, y) determined by its trace ψ(t, x) = �(t, x, η(t, x)) at
the free surface y = η(t, x). Actually � is the unique solution of the elliptic
equation

�� = 0 in Dη, �(t, x, η(t, x)) = ψ(t, x) , �y(t, x, y) → 0 as y →−∞.

The time evolution of the fluid is determined by two boundary conditions at
the free surface. The first is that the fluid particles remain, along the evolution,
on the free surface (kinematic boundary condition), and the second one is that
the pressure of the fluid is equal, at the free surface, to the constant atmospheric
pressure (dynamic boundary condition). Then, as shown by Zakharov [51] and
Craig-Sulem [17], the time evolution of the fluid is determined by the following
equations for the unknowns (η(t, x), ψ(t, x)),

ηt = G(η)ψ , ψt = −gη − ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ + ηxψx

)2
, (2.1)

where g > 0 is the gravity constant and G(η) denotes the Dirichlet-Neumann
operator [G(η)ψ](x) := �y(x, η(x)) − �x (x, η(x))ηx (x). It results that
G(η)[ψ] has zero average.

With no loss of generality we set the gravity constant g = 1. The equations
(2.1) are the Hamiltonian system

∂t

[
η

ψ

]
= J

[∇ηH
∇ψH

]
, J :=

[
0 Id
−Id 0

]
, (2.2)

where ∇ denote the L2-gradient, and the Hamiltonian
H(η, ψ):=1

2

∫
T

(
ψ G(η)ψ + η2

)
dx is the sum of the kinetic and potential

energy of the fluid. The associated symplectic 2-form is

W

((
η1
ψ1

)
,

(
η2
ψ2

))
= (−ψ1, η2)L2 + (η1, ψ2)L2 . (2.3)
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658 M. Berti et al.

In addition of being Hamiltonian, the water waves system (2.1) possesses
other important symmetries. First of all it is time reversible with respect to the
involution

ρ

[
η(x)
ψ(x)

]
:=

[
η(−x)
−ψ(−x)

]
, i.e.H ◦ ρ = H , (2.4)

or equivalently the water waves vector field X (η, ψ) anticommutes with ρ,
i.e. X ◦ρ = −ρ ◦ X . This property follows noting that the Dirichlet-Neumann
operator satisfies (see e.g. [8])

G(η∨)[ψ∨] = (G(η)[ψ])∨ where f ∨(x) := f (−x) . (2.5)

Noteworthy solutions of (2.1) are the so-called traveling Stokes waves,
namely solutions of the form η(t, x) = η̆(x − ct) and ψ(t, x) = ψ̆(x − ct)
for some real c and 2π -periodic functions (η̆(x), ψ̆(x)). In a reference frame
in translational motion with constant speed c, the water waves equations (2.1)
then become

ηt = cηx +G(η)ψ , ψt = cψx − gη− ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ + ηxψx

)2

(2.6)
and the Stokes waves (η̆, ψ̆) are equilibrium steady solutions of (2.6).

The rigorous existence proof of the bifurcation of small amplitude Stokes
waves for pure gravity water waves goes back to the works of Levi-Civita [38],
Nekrasov [41], and Struik [48]. We denote by B(r) := {x ∈ R : |x | < r} the
real ball with center 0 and radius r .

Theorem 2.1 (Stokes waves) There exist ε0 > 0 and a unique family of real
analytic solutions (ηε(x), ψε(x), cε), parameterized by the amplitude |ε| ≤ ε0,
of

c ηx + G(η)ψ = 0 , cψx − gη− ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ + ηxψx

)2 = 0 ,

(2.7)
such that ηε(x), ψε(x) are 2π -periodic; ηε(x) is even and ψε(x) is odd. They
have the expansion

ηε(x) = ε cos(x)+ ε2

2
cos(2x)+O(ε3) ,

ψε(x) = ε sin(x)+ ε2

2
sin(2x)+O(ε3) ,

cε = 1+ 1

2
ε2 +O(ε3) .

(2.8)
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More precisely for any σ ≥ 0 and s > 5
2 , there exists ε0 > 0 such that the map

ε 	→ (ηε, ψε, cε) is analytic from B(ε0) → Hσ,s(T) × Hσ,s(T) × R, where
Hσ,s(T) is the space of 2π -periodic analytic functions u(x) = ∑

k∈Z
ukei kx

with ‖u‖2σ,s :=
∑

k∈Z
|uk |2〈k〉2se2σ |k| < +∞.

The existence of solutions of (2.7) can nowadays be deduced by the analytic
Crandall-Rabinowitz bifurcation theorem from a simple eigenvalue, see e.g.
[15]. Since Lewy [39] it is known thatC1 traveling waves are actually real ana-
lytic, see also Nicholls-Reitich [42]. The expansion (2.8) is given for example
in [43, Proposition 2.2]. The analyticity result of Theorem 2.1 is explicitely
proved in [10]. We also mention that more general time quasi-periodic trav-
eling Stokes waves have been recently proved for (2.1) in [9] in finite depth
(actually for any constant vorticity), in [22] in infinite depth, and in [8] for
gravity-capillary water waves with constant vorticity in any depth.

Linearization at the Stokes waves. In order to determine the stabil-
ity/instability of the Stokes waves given by Theorem 2.1, we linearize the
water waves equations (2.6) with c = cε at (ηε(x), ψε(x)). In the sequel
we follow closely [43], but, as in [4,9], we emphasize the Hamiltonian and
reversible structures of the linearized equations, since these properties play a
crucial role in our proof of the instability result.

By using the shape derivative formula for the differential dηG(η)[η̂] of the
Dirichlet-Neumann operator (see e.g. formula (3.4) in [43]), one obtains the
autonomous real linear system

η̂t

ψ̂t
=

−G(η )B − ∂x ◦ (V − c ) G(η )

−g + B(V − c )∂x − B∂x ◦ (V − c ) − BG(η ) ◦ B −(V − c )∂x + BG(η )

η̂

ψ̂
,

(2.9)

where

V := V (x) := −B(ηε)x + (ψε)x ,

B := B(x) := G(ηε)ψε + (ψε)x (ηε)x

1+ (ηε)2x
= (ψε)x − cε

1+ (ηε)2x
(ηε)x .

The functions (V, B) are the horizontal and vertical components of the
velocity field (�x , �y) at the free surface. Moreover ε 	→ (V, B) is analytic
as a map B(ε0) → Hσ,s−1(T)× Hσ,s−1(T).

The real system (2.9) is Hamiltonian, i.e. of the form JA for a symmetric
operator A = A�, where A� is the transposed operator with respect the
standard real scalar product of L2(T, R)× L2(T, R).
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Moreover, since ηε is even in x andψε is odd in x , then the functions (V, B)

are respectively even and odd in x . Using also (2.5), the linear operator in (2.9)
is reversible, i.e. it anti-commutes with the involution ρ in (2.4).

Under the time-independent “good unknown of Alinhac” linear transforma-
tion [

η̂

ψ̂

]
:= Z

[
u
v

]
, Z =

[
1 0
B 1

]
, Z−1 =

[
1 0
−B 1

]
, (2.10)

the system (2.9) assumes the simpler form

[
ut
vt

]
=

[ −∂x ◦ (V − cε) G(ηε)

−g − ((V − cε)Bx ) −(V − cε)∂x

] [
u
v

]
. (2.11)

Note that, since the transformation Z is symplectic, i.e. Z�J Z = J , and
reversibility preserving, i.e. Z ◦ ρ = ρ ◦ Z , the linear system (2.11) is Hamil-
tonian and reversible as (2.9).

Next, following Levi-Civita [38], we perform a conformal change of vari-
ables to flatten the water surface. By [43, Prop. 3.3], or [11, section 2.4],
there exists a diffeomorphism of T, x 	→ x + p(x), with a small 2π -periodic
function p(x), such that, by defining the associated composition operator
(Pu)(x) := u(x + p(x)), the Dirichlet-Neumann operator writes as

G(η) = ∂x ◦P−1 ◦H ◦P ,

where H is the Hilbert transform. The function p(x) is determined as a fixed
point of p = H[ηε ◦ (Id + p)], see e.g. [43, Proposition 3.3.] or [11, formula
(2.125)]. By the analyticity of the map ε → ηε ∈ Hσ,s , σ > 0, s > 1/2,
the analytic implicit function theorem2 implies the existence of a solution
ε 	→ p(x) := pε(x) analytic as a map B(ε0) → Hs(T). Moreover, since ηε is
even, the function p(x) is odd.

Under the symplectic and reversibility-preserving map

P :=
[
(1+ px )P 0

0 P

]
, (2.12)

(P preserves the symplectic 2-form in (2.3) by inspection, and commutes
with ρ being p(x) odd), the system (2.11) transforms into the linear system
ht = Lεh where Lε is the Hamiltonian and reversible real operator

2 We use that the composition operator p 	→ η(x+ p(x)) induced by an analytic function η(x)
is analytic on Hs(T) for s > 1/2.
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Full description of Benjamin-Feir instability… 661

Lε =
[
∂x ◦ (1+ pε(x)) |D|
−(1+ aε(x)) (1+ pε(x))∂x

]

= J
[

1+ aε(x) −(1+ pε)(x)∂x
∂x ◦ (1+ pε(x)) |D|

]
(2.13)

where

1+ pε(x) := cε − V (x + p(x))

1+ px (x)
,

1+ aε(x) := 1+ (V (x + p(x))− cε)Bx (x + p(x))

1+ px (x)
.

(2.14)

The functions pε(x) and aε(x) are even in x and, by the expansion (2.8) of
the Stokes wave, it results [43, Lemma 3.7]

pε(x) = −2ε cos(x)+ ε2
(3
2
− 2 cos(2x)

)+O(ε3)

= εp1(x)+ ε2 p2(x)+O(ε3) ,

(2.15)

aε(x) = −2ε cos(x)+ ε2
(
2− 2 cos(2x)

)+O(ε3)

= εa1(x)+ ε2a2(x)+O(ε3) .
(2.16)

In addition, by the analiticity results of the functions V, B, p(x) given above,
the functions pε and aε are analytic in ε as maps B(ε0) → Hs(T).

Bloch-Floquet expansion. The operator Lε in (2.13) has 2π -periodic coef-
ficients, so its spectrum on L2(R, C

2) is most conveniently described by
Bloch-Floquet theory (see e.g. [32] and references therein). This theory guar-
antees that

σL2(R)(Lε) =
⋃

μ∈[− 1
2 , 12 )

σL2(T)(Lμ,ε) , Lμ,ε := e−iμx Lε e
iμx .

This reduces the problem to study the spectrum of Lμ,ε acting on L2(T, C
2)

for different values of μ. In particular, if λ is an eigenvalue of Lμ,ε with
eigenvector v(x), then h(t, x) = eλt eiμxv(x) solves ht = Lεh. We remark
that:

1. If A = Op(a) is a pseudo-differential operatorwith symbola(x, ξ),which
is 2π periodic in the x-variable, then Aμ := e−iμx Aeiμx = Op(a(x, ξ +μ))

is a pseudo-differential operator with symbol a(x, ξ+μ) (which can be proved
e.g. following Lemma 3.5 of [43]).

2. If A is a real operator then Aμ = A−μ. As a consequence the spectrum

σ(A−μ) = σ(Aμ) . (2.17)
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Thenwe can study σ(Aμ) just forμ > 0. Furthermore σ(Aμ) is a 1-periodic
set with respect to μ, so one can restrict to μ ∈ [0, 1

2 ).
By the previous remarks the Floquet operator associated with the real oper-

ator Lε in (2.13) is the complex Hamiltonian and reversible operator (see
Definition 2.2 below)

Lμ,ε : =
[
(∂x + iμ) ◦ (1+ pε(x)) |D + μ|

−(1+ aε(x)) (1+ pε(x))(∂x + iμ)

]

=
[

0 Id
−Id 0

]

︸ ︷︷ ︸
= J

[
1+ aε(x) −(1+ pε(x))(∂x + iμ)

(∂x + iμ) ◦ (1+ pε(x)) |D + μ|
]

︸ ︷︷ ︸
=: Bμ,ε

. (2.18)

We regardLμ,ε as an operator with domain H1(T) := H1(T, C
2) and range

L2(T) := L2(T, C
2), equipped with the complex scalar product

( f, g) := 1

2π

∫ 2π

0
( f1g1 + f2g2) dx, ∀ f =

[
f1
f2

]
, g =

[
g1
g2

]
∈ L2(T, C

2).

(2.19)
We also denote ‖ f ‖2 = ( f, f ).

The complex operatorLμ,ε in (2.18) isHamiltonian andReversible, accord-
ing to the following definition.

Definition 2.2 (Complex Hamiltonian/Reversible operator) A complex
operator L : H1(T, C

2) → L2(T, C
2) is

(i) Hamiltonian, if L = JB where B is a self-adjoint operator, namely B =
B∗, where B∗ (with domain H1(T)) is the adjoint with respect to the
complex scalar product (2.19) of L2(T).

(i i) Reversible, if
L ◦ ρ = −ρ ◦ L , (2.20)

where ρ is the complex involution (cfr. (2.4))

ρ

[
η(x)
ψ(x)

]
:=

[
η(−x)
−ψ(−x)

]
. (2.21)

The property (2.20) for Lμ,ε follows because Lε is a real operator which is
reversible with respect to the involution ρ in (2.4). Equivalently, sinceJ ◦ρ =
−ρ ◦ J , a complex Hamiltonian operator L = JB is reversible, if the self-
adjoint operator B is reversibility-preserving, i.e.

B ◦ ρ = ρ ◦ B . (2.22)
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We shall deeply exploit these algebraic properties in the proof of Theorem
2.3.

In addition (μ, ε) → Lμ,ε ∈ L(H1(T), L2(T)) is analytic, since the func-
tions ε 	→ aε , pε defined in (2.15), (2.16) are analytic asmaps B(ε0) → H1(T)

and Lμ,ε is linear in μ. Indeed the Fourier multiplier operator |D+μ| can be
written, for any μ ∈ [−1

2 ,
1
2 ), as |D + μ| = |D| + μ sgn(D) + |μ|
0 and

thus (see [43, Section 5.1])

|D + μ| = |D| + μ(sgn(D)+
0) , ∀μ > 0 , (2.23)

where sgn(D) is the Fourier multiplier operator, acting on 2π -periodic func-
tions, with symbol

sgn(k) := 1 ∀k > 0 , sgn(0) := 0 , sgn(k) := −1 ∀k < 0 , (2.24)

and 
0 is the projector operator on the zero mode, 
0 f (x) := 1
2π

∫
T
f (x)dx .

Our aim is to prove the existence of eigenvalues of Lμ,ε with non zero real
part.We remark that theHamiltonian structure ofLμ,ε implies that eigenvalues
with non zero real part may arise only from multiple eigenvalues of Lμ,0,
because if λ is an eigenvalue of Lμ,ε then also −λ is. In particular simple
purely imaginary eigenvalues of Lμ,0 remain on the imaginary axis under
perturbation. We now carefully describe the spectrum of Lμ,0.

The spectrumofLμ,0. The spectrum of the Fouriermultipliermatrix operator

Lμ,0 =
[
∂x + iμ |D + μ|
−1 ∂x + iμ

]
(2.25)

consists of the purely imaginary eigenvalues {λ±k (μ) , k ∈ Z}, where

λ±k (μ) := i
(±k + μ∓√|k±μ|) . (2.26)

It is easily verified (see e.g. [2]) that the eigenvalues λ±k (μ) in (2.26) may
“collide” only forμ = 0 orμ = 1

4 . Forμ = 0 the real operatorL0,0 possesses
the eigenvalue 0 with algebraic multiplicity 4,

λ+0 (0) = λ−0 (0) = λ+1 (0) = λ−1 (0) = 0 ,

and geometric multiplicity 3. A real basis of the Kernel of L0,0 is

f +1 :=
[
cos(x)
sin(x)

]
, f −1 :=

[− sin(x)
cos(x)

]
, f −0 :=

[
0
1

]
, (2.27)
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together with the generalized eigenvector

f +0 :=
[
1
0

]
, L0,0 f

+
0 = − f −0 . (2.28)

Furthermore 0 is an isolated eigenvalue for L0,0, namely the spectrum
σ

(L0,0
)
decomposes in two separated parts

σ
(L0,0

) = σ ′
(L0,0

) ∪ σ ′′
(L0,0

)
where σ ′(L0,0) := {0} (2.29)

and

σ ′′(L0,0) :=
{
λσ
k (0), k �= 0, 1, σ = ±}

.

Note that σ ′′(L0,0) is contained in {λ ∈ iR : |λ| ≥ 2−√
2}.

We shall also use that, as proved in Theorem 4.1 in [43], the operator L0,ε
possesses, for any sufficiently small ε �= 0, the eigenvalue 0 with a four dimen-
sional generalized Kernel, spanned by ε-dependent vectors U1, Ũ2,U3,U4
satisfying, for some real constant αε ,

L0,εU1 = 0 , L0,εŨ2 = 0 , L0,εU3 = αε Ũ2 , L0,εU4 = −U1 , U1 =
[
0
1

]
.

(2.30)
By Kato’s perturbation theory (see Lemma 3.1 below) for any μ, ε �= 0

sufficiently small, the perturbed spectrum σ
(Lμ,ε

)
admits a disjoint decom-

position as
σ

(Lμ,ε

) = σ ′
(Lμ,ε

) ∪ σ ′′
(Lμ,ε

)
, (2.31)

where σ ′
(Lμ,ε

)
consists of 4 eigenvalues close to 0. We denote by Vμ,ε the

spectral subspace associated with σ ′
(Lμ,ε

)
, which has dimension 4 and it

is invariant by Lμ,ε . Our goal is to prove that, for ε small, for values of the
Floquet exponentμ in an interval of order ε, the 4×4 matrix which represents
the operator Lμ,ε : Vμ,ε → Vμ,ε possesses a pair of eigenvalues close to zero
with opposite non zero real parts.

Before stating our main result, let us introduce a notation we shall use
through all the paper:

• Notation: we denote by O(μm1εn1, . . . , μmpεn p), m j , n j ∈ N, analytic
functions of (μ, ε) with values in a Banach space X which satisfy, for
some C > 0, the bound ‖O(μm j εn j )‖X ≤ C

∑p
j=1 |μ|m j |ε|n j for small

values of (μ, ε). We denote rk(μm1εn1, . . . , μmpεn p) scalar functions
O(μm1εn1, . . . , μmpεn p) which are also real analytic.

Our complete spectral result is the following:
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Theorem 2.3 (Complete Benjamin-Feir spectrum) There exist ε0, μ0 > 0
such that, for any 0 ≤ μ < μ0 and 0 ≤ ε < ε0, the operator Lμ,ε : Vμ,ε →
Vμ,ε can be represented by a 4× 4 matrix of the form

(
U 0
0 S

)
, (2.32)

where U and S are 2× 2 matrices of the form

U :=
(

i
(1
2μ+ r(με2, μ2ε, μ3)

) −μ2

8 (1+ r5(ε, μ))
μ2

8 (1+ r1(ε, μ))− ε2(1+ r ′1(ε, με2)) i
(1
2μ+ r(με2, μ2ε, μ3)

)

)

,

(2.33)

S :=
(
iμ

(
1+ r9(ε2, με, μ2)

)
μ+ r10(μ2ε, μ3)

−1− r8(ε2, μ2ε, μ3) iμ
(
1+ r9(ε2, με, μ2)

)
)

, (2.34)

where in each of the two matrices the diagonal entries are identical. The
eigenvalues of the matrix U are given by

λ±1 (μ, ε) = 1

2
iμ+ i r(με2, μ2ε, μ3)

±μ

8

√
8ε2

(
1+ r0(ε, μ)

)− μ2
(
1+ r ′0(ε, μ)

)
.

Note that if 8ε2(1 + r0(ε, μ)) − μ2(1 + r ′0(ε, μ)) > 0, respectively < 0,
the eigenvalues λ±1 (μ, ε) have a nontrivial real part, respectively are purely
imaginary.

The eigenvalues of the matrix S are a pair of purely imaginary eigenvalues
of the form

λ±0 (μ, ε) = ∓i
√

μ
(
1+ r ′(ε2, με, μ2)

)+ iμ
(
1+ r9(ε

2, με, μ2)
)
.

For ε = 0 the eigenvalues λ±1 (μ, 0), λ±0 (μ, 0) coincide with those in (2.26).

We conclude this section describing in detail our approach.

Ideas and scheme of proof. We first write the operator Lμ,ε = iμ +Lμ,ε

as in (3.1) and we aim to construct a basis of Vμ,ε to represent Lμ,ε |Vμ,ε as
a convenient 4× 4 matrix. The unperturbed operatorL0,0|V0,0 possesses 0 as
isolated eigenvalue with algebraic multiplicity 4 and generalized kernel V0,0
spanned by the vectors { f ±1 , f ±0 } in (2.27), (2.28).

Exploiting Kato’s theory of similarity transformations for separated eigen-
values we prolong the unperturbed symplectic basis { f ±1 , f ±0 } of V0,0 into a
symplectic basis of Vμ,ε (cfr. Definition 3.6), depending analytically on μ, ε.
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In Lemma 3.1we construct the transformation operatorUμ,ε , see (3.10), which
is invertible and analytic inμ, ε, and maps isomorphically V0,0 into Vμ,ε . Fur-
thermore, since Lμ,ε is Hamiltonian and reversible, we prove in Lemma 3.2
that the operator Uμ,ε is symplectic and reversibility preserving. This implies
that the vectors f σ

k (μ, ε) := Uμ,ε f σ
k , k = 0, 1, σ = ±, form a symplectic

and reversible basis of Vμ,ε , according to Definition 3.6.
This construction has the following interpretation in the setting of com-

plex symplectic structures, cfr. [3,21]. The complex symplectic form (3.18)
restricted to the symplectic subspace Vμ,ε is represented, in the (μ, ε)-
dependent symplectic basis f σ

k (μ, ε), by the constant antisymmetric matrix
J4 defined in (3.23), for any value of (μ, ε). In this sense Uμ,ε is acting as
a “Darboux transformation”. Consequently, the Hamiltonian and reversible
operatorLμ,ε |Vμ,ε is represented, in the symplectic basis f σ

k (μ, ε), by a 4×4
matrix of the form J4Bμ,ε with Bμ,ε selfadjoint, see Lemma 3.10. This prop-
erty simplifies considerably the perturbation theory of the spectrum (we refer
to [44] for a discussion, in a different context, of the difficulties raised by
parameter-dependent symplectic forms).

We then modify the basis { f σ
k (μ, ε)} to construct a new symplectic and

reversible basis {gσ
k (μ, ε)} of Vμ,ε , still depending analytically on μ, ε, with

the additional property that g−1 (0, ε) has zero space average; this property plays
a crucial role in the expansion obtained in Lemma 4.7, necessary to exhibit
the Benjamin-Feir instability phenomenon, see Remark 4.8. By construction,
the eigenvalues of the 4 × 4 matrix Lμ,ε , representing the action of the oper-
ator Lμ,ε on the basis {gσ

k (μ, ε)}, coincide with the portion of the spectrum
σ ′(Lμ,ε) close to zero, defined in (2.31). In Proposition 4.4 we prove that the
4× 4 Hamiltonian and reversible matrix Lμ,ε has the form

Lμ,ε = J4

(
E F
F∗ G

)
=

(
J2E J2F
J2F∗ J2G

)
, (2.35)

where J2 =
(

0 1−1 0

)
and E = E∗, G = G∗ and F are 2 × 2 matrices having

the expansions (4.13)-(4.15). To compute these expansions –from which the
Benjamin-Feir instabilitywill emerge–we use two ingredients. First we Taylor
expand (μ, ε) 	→ Uμ,ε in Lemma A.1. The Taylor expansion of Uμ,ε is not a
symplectic operator, but this is no longer important to compute the expansions
(4.13)-(4.15) of the matrix Lμ,ε . We used that Uμ,ε is symplectic to prove
the Hamiltonian structure (2.35) of Lμ,ε . The second ingredient is a careful
analysis of L0,ε and ∂μLμ,ε |μ=0. In particular we prove that the (2, 2)-entry
of the matrix E in (4.13) does not have any term O(εm) nor O(μεm) for any
m ∈ N. These terms would be dangerous because they might change the sign
of the entry (2, 2) of the matrix E in (4.13) which instead is always negative.
This is crucial to prove the Benjamin-Feir instability, as we explain below.
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We show the absence of terms O(εm), m ∈ N, fully exploiting the structural
information (2.30) concerning the four dimensional generalized Kernel of the
operator L0,ε for any ε > 0, see Lemma 4.6. The absence of terms O(μεm),
m ∈ N, is due to the properties of the basis {gσ

k (μ, ε)} (see Remark 4.8) and
it is the motivation for modifying the original basis { f σ

k (μ, ε)}.
Thanks to this analysis, the 2× 2 matrix

J2E =
(

−i (μ
2 + r2(με2, μ2ε, μ3)

) −μ2

8 (1+ r5(ε, μ))

−ε2(1+ r ′1(ε, με2))+ μ2

8 (1+ r ′′1 (ε, μ)) −i (μ
2 + r2(με2, μ2ε, μ3)

)

)

(2.36)
possesses two eigenvalues with non-zero real part –we say that it exhibits the
Benjamin-Feir phenomenon– as long as the two off-diagonal elements have
the same sign, which happens for 0 < μ < μ(ε) with μ(ε) ∼ 2

√
2ε. On the

other hand the 2× 2 matrix J2G has purely imaginary eigenvalues for μ > 0
of orderO(

√
μ). In order to prove that the complete 4×4matrix Lμ,ε in (2.35)

possesses Benjamin-Feir unstable eigenvalues as well, our aim is to eliminate
the coupling term J2F . This is done in Sect. 5 by a block diagonalization
procedure, inspired by KAM theory. This is a singular perturbation problem
because the spectrum of the matrices J2E and J2G tends to 0 as μ → 0.
We construct a symplectic and reversibility preserving block-diagonalization
transformation in three steps:

1. First step of block-diagonalization (Sect. 5.1). Note that the spectral gap
between the 2 block matrices J2E and J2G is of order O(

√
μ), whereas

the entry F11 of the matrix F has size O(ε3). In Sect. 5.1 we perform a
symplectic and reversibility-preserving change of coordinates removing F11
and conjugating Lμ,ε to a new Hamiltonian and reversible matrix L(1)

μ,ε whose
block-off-diagonal matrix J2F (1) has sizeO(με, μ3) and J2E (1) has the same
form (2.36), and therefore possesses Benjamin-Feir unstable eigenvalues as
well. This transformation is inspired by the Jordan normal form of L0,ε .

2. Second step of block-diagonalization (Sect. 5.2). We next perform a step
of block-diagonalization to decrease further the size of the off-diagonal blocks:
by applying a procedure inspired by KAM theory we obtain (at least) aO(μ2)

factor in each entries of F (2) in (5.14) (by contrast note the presence ofO(με)

entries in F (1)). To achieve this, we construct a linear change of variables
that conjugates the matrix L(1)

μ,ε to the new Hamiltonian and reversible matrix

L(2)
μ,ε in (5.13), where the new off-diagonal matrix J2F (2) is much smaller than

J2F (1). The delicate point, for which we perform Step 2 separately than Step
3, is to estimate the new block-diagonal matrices after the conjugation, and
prove that J2E (2) has still the form (2.36) – thus possessing Benjamin-Feir
unstable eigenvalues. Let us elaborate on this. In order to reduce the size of
J2F (1), we conjugate L(1)

μ,ε by the symplectic matrix exp(S(1)), where S(1) is a
Hamiltonianmatrix with the same form ofJ2F (1), see (5.12). The transformed
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matrix L(2)
μ,ε = exp(S(1))L(1)

μ,ε exp(−S(1)) has the Lie expansion3

L(2)
μ,ε =

(
J2E (1) 0

0 J2G(1)

)

+
(

0 J2F (1)

J2[F (1)]∗ 0

)
+

[
S(1) ,

(
J2E (1) 0

0 J2G(1)

)]
(2.37)

+ 1

2

[
S(1),

[
S(1),

(
J2E (1) 0

0 J2G(1)

)]]
+

[
S(1),

(
0 J2F (1)

J2[F (1)]∗ 0

)]
+ h.o.t.

The first line in the right hand side of (2.37) is the original block-diagonal
matrix, the second line of (2.37) is a purely off-diagonal matrix and the third
line is the sum of two block-diagonal matrices and “h.o.t.” collects terms of
much smaller size. We determine S(1) in such a way that the second line of
(2.37) vanishes (this equation would be referred to as the “homological equa-
tion” in the context of KAM theory). In this way the remaining off-diagonal
matrices (appearing in the h.o.t. remainder) are much smaller in size. We
then compute the block-diagonal corrections in the third line of (2.37) and
show that the new block-diagonal matrix J2E (2) has again the form (2.36)
(clearly with different remainders, but of the same order) and thus displays
Benjamin-Feir instability. This last step is delicate because S(1) = O(ε, μ2)

and J2F (1) = O(με, μ3) and so the matrix in the third line of (2.37) could
a priori have elements of size O(με2). Adding a term of size O(με2) to the

(1,2)-entry of the matrix J2E (1), which has the form −μ2

8 (1+ r5(ε, μ)) as in
(2.36), could make it positive. In such a case the eigenvalues of J2E (2) would
be purely imaginary, and the Benjamin-Feir instability would disappear. Actu-
ally, estimating individually each components, we show that no contribution
of size O(με2) appears in the (1,2)-entry.

One further comment is needed.We solve the required homological equation
without diagonalizing J2E (1) and J2G(1) (as done typically in KAM theory).
Note that diagonalization is not even possible at μ ∼ 2

√
2ε where J2E (1)

becomes a Jordan block (here its eigenvalues fail to be analytic). We use a
direct linear algebra argument that enables to preserve the analyticity in μ, ε

of the transformed 4× 4 matrix L(2)
μ,ε .

3. Complete block-diagonalization (Sect. 5.3). As a last step in Lemma 5.8
we perform, by means of a standard implicit function theorem, a symplectic
and reversibility preserving transformation that block-diagonalize L(2)

μ,ε com-
pletely. The invertibility properties and estimates required to apply the implicit
function theorem rely on the solution of the homological equation obtained in
Step 2. The off-diagonal matrix J2F (2) is small enough to directly prove that

3 recall that exp(S)L exp(−S)= ∑
n≥0 1

n!ad
n
S(L), where ad0S(L) := L , and, for n≥ 1,

adnS(L) = [S, adn−1S (L)].
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the block-diagonal matrix J2E (3) has the same form of J2E (2), thus possesses
Benjamin-Feir unstable eigenvalues (without distinguishing the entries as we
do in Step 2).

In conclusion, the original matrix Lμ,ε in (2.35) has been conjugated to
the Hamiltonian and reversible matrix (2.32). This proves Theorem 2.3 and
Theorem 1.1.

3 Perturbative approach to the separated eigenvalues

In this section we apply Kato’s similarity transformation theory [34, I-§4-6,
II-§4] to study the splitting of the eigenvalues of Lμ,ε close to 0 for small
values of μ and ε. First of all it is convenient to decompose the operator Lμ,ε

in (2.18) as
Lμ,ε = iμ+Lμ,ε , μ > 0 , (3.1)

where, using also (2.23),

Lμ,ε :=
[

∂x ◦ (1+ pε(x))+ iμ pε(x) |D| + μ(sgn(D)+
0)

−(1+ aε(x)) (1+ pε(x))∂x + iμ pε(x)

]
.

(3.2)
The operatorLμ,ε is still Hamiltonian, having the form

Lμ,ε = J Bμ,ε , (3.3)

Bμ,ε :=
[
1+ aε(x) −((1+ pε(x))∂x − iμ pε(x)
∂x ◦ (1+ pε(x))+ iμ pε(x) |D| + μ(sgn(D)+
0)

]

with Bμ,ε selfadjoint, and it is also reversible, namely it satisfies, by (2.20),

Lμ,ε ◦ ρ = −ρ ◦Lμ,ε , ρ defined in (2.21) , (3.4)

whereasBμ,ε is reversibility-preserving, i.e. fulfills (2.22). Note also thatB0,ε
is a real operator.

The scalar operator iμ ≡ iμ Id just translates the spectrum of Lμ,ε along
the imaginary axis of the quantity iμ, that is, in view of (3.1),

σ(Lμ,ε) = iμ+ σ(Lμ,ε) .

Thus in the sequel we focus on studying the spectrum of Lμ,ε .
Note also that L0,ε = L0,ε for any ε ≥ 0. In particular L0,0 has zero

as isolated eigenvalue with algebraic multiplicity 4, geometric multiplicity 3
and generalized kernel spanned by the vectors { f +1 , f −1 , f +0 , f −0 } in (2.27),
(2.28). Furthermore its spectrum is separated as in (2.29). For any ε �= 0 small,
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L0,ε has zero as isolated eigenvalue with geometric multiplicity 2, and two
generalized eigenvectors satisfying (2.30).

We also remark that, in view of (2.23), the operatorLμ,ε is linear in μ. We
remind thatLμ,ε : Y ⊂ X → X has domain Y := H1(T) := H1(T, C

2) and
range X := L2(T) := L2(T, C

2).
In the next lemma we construct the transformation operators which map

isomorphically the unperturbed spectral subspace into the perturbed ones.

Lemma 3.1 Let � be a closed, counterclockwise-oriented curve around 0
in the complex plane separating σ ′

(
L0,0

) = {0} and the other part of the
spectrum σ ′′

(
L0,0

)
in (2.29). There exist ε0, μ0 > 0 such that for any (μ, ε) ∈

B(μ0)× B(ε0) the following statements hold:

1. The curve � belongs to the resolvent set of the operatorLμ,ε : Y ⊂ X →
X defined in (3.2).

2. The operators

Pμ,ε := − 1

2π i

∮

�

(Lμ,ε − λ)−1dλ : X → Y (3.5)

are well defined projectors commuting with Lμ,ε , i.e.

P2
μ,ε = Pμ,ε , Pμ,εLμ,ε = Lμ,εPμ,ε . (3.6)

The map (μ, ε) 	→ Pμ,ε is analytic from B(μ0)× B(ε0) to L(X, Y ).
3. The domain Y of the operatorLμ,ε decomposes as the direct sum

Y = Vμ,ε ⊕ Ker(Pμ,ε) , Vμ,ε := Rg(Pμ,ε) = Ker(Id − Pμ,ε) , (3.7)

of the closed subspaces Vμ,ε , Ker(Pμ,ε) of Y , which are invariant under
Lμ,ε ,

Lμ,ε : Vμ,ε → Vμ,ε , Lμ,ε : Ker(Pμ,ε) → Ker(Pμ,ε) .

Moreover

σ(Lμ,ε) ∩ {z ∈ C inside �} = σ(Lμ,ε |Vμ,ε ) = σ ′(Lμ,ε),

σ (Lμ,ε) ∩ {z ∈ C outside �} = σ(Lμ,ε |Ker(Pμ,ε)) = σ ′′(Lμ,ε) ,
(3.8)

proving the “semicontinuity property” (2.31) of separated parts of the
spectrum.
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4. The projectors Pμ,ε are similar one to each other: the transformation oper-
ators4

Uμ,ε :=
(
Id − (Pμ,ε − P0,0)

2)−1/2[
Pμ,εP0,0 + (Id − Pμ,ε)(Id − P0,0)

]

(3.10)
are bounded and invertible in Y and in X, with inverse

U−1
μ,ε =

[
P0,0Pμ,ε + (Id − P0,0)(Id − Pμ,ε)

](
Id − (Pμ,ε − P0,0)

2)−1/2
,

(3.11)
and

Uμ,εP0,0U
−1
μ,ε = Pμ,ε , U−1

μ,εPμ,εUμ,ε = P0,0 . (3.12)

The map (μ, ε) 	→ Uμ,ε is analytic from B(μ0)× B(ε0) to L(Y ).
5. The subspaces Vμ,ε = Rg(Pμ,ε) are isomorphic one to each other:

Vμ,ε = Uμ,εV0,0. In particular dim Vμ,ε = dim V0,0 = 4, for any
(μ, ε) ∈ B(μ0)× B(ε0).

Proof

1. For any λ ∈ C we decompose Lμ,ε − λ = L0,0 − λ + Rμ,ε where

L0,0 =
[

∂x |D|
−1 ∂x

]
and

Rμ,ε := Lμ,ε −L0,0 =
[

(∂x + iμ)pε(x) μg(D)

−aε(x) pε(x)(∂x + iμ)

]
: Y → X ,

(3.13)
having used also (2.23) and setting g(D) := sgn(D)+
0. For any λ ∈ �,
the operatorL0,0 − λ is invertible and its inverse is the Fourier multiplier
matrix operator

(L0,0 − λ)−1 = Op

(
1

(i k − λ)2 + |k|
[
i k − λ −|k|

1 i k − λ

])
: X → Y .

Hence, for |ε| < ε0 and |μ| < μ0 small enough, uniformly on the compact
set �, the operator (L0,0 − λ)−1Rμ,ε : Y → Y is bounded, with small
operatorial norm. Then Lμ,ε − λ is invertible by Neumann series and

4 The operator (Id − R)− 1
2 is defined, for any operator R satisfying ‖R‖L(Y ) < 1, by the

power series

(Id − R)− 1
2 :=

∞∑

k=0

(−1/2
k

)
(−R)k = Id + 1

2
R + 3

8
R2 +O(R3) . (3.9)
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(Lμ,ε − λ)−1 = (
Id + (L0,0 − λ)−1Rμ,ε

)−1
(L0,0 − λ)−1 : X → Y .

(3.14)

This proves that � belongs to the resolvent set of Lμ,ε .
2. By the previous point the operator Pμ,ε is well defined and bounded X →

Y . It clearly commutes with Lμ,ε . The projection property P2
μ,ε = Pμ,ε

is a classical result based on complex integration, see [34], and we omit
it. The map (μ, ε) → (L0,0 − λ)−1Rμ,ε ∈ L(Y ) is analytic. Since the
map T 	→ (Id+ T )−1 is analytic in L(Y ) (for ‖T ‖L(Y ) < 1) the operators
(Lμ,ε−λ)−1 in (3.14) and Pμ,ε inL(X, Y ) are analytic aswell with respect
to (μ, ε).

3. The decomposition (3.7) is a consequence of Pμ,ε being a continuous
projector in L(Y ). The invariance of the subspaces follows since Pμ,ε and
Lμ,ε commute. To prove (3.8) define for an arbitrary λ0 /∈ � the operator

Rμ,ε(λ0) := − 1

2π i

∮

�

1

λ− λ0

(Lμ,ε − λ
)−1 dλ : X → Y .

If λ0 is outside�, one has Rμ,ε(λ0)(Lμ,ε−λ0) = (Lμ,ε−λ0)Rμ,ε(λ0) =
Pμ,ε and thus λ0 /∈ σ(Lμ,ε |Vμ,ε ). For λ0 inside �, Rμ,ε(λ0)(Lμ,ε−λ0) =
(Lμ,ε − λ0)Rμ,ε(λ0) = Pμ,ε − Id and thus λ0 /∈ σ(Lμ,ε |Ker(Pμ,ε)). Then
(3.8) follows.

4. By (3.5), the resolvent identity A−1− B−1 = A−1(B− A)B−1 and (3.13),
we write

Pμ,ε − P0,0 = 1

2π i

∮

�

(Lμ,ε − λ)−1Rμ,ε(L0,0 − λ)−1dλ .

Then ‖Pμ,ε − P0,0‖L(Y ) < 1 for |ε| < ε0, |μ| < μ0 small enough and
the operators Uμ,ε in (3.10) are well defined in L(Y ) (actually Uμ,ε are
also in L(X)). The invertibility of Uμ,ε and formula (3.12) are proved in
[34], Chapter I, Section 4.6, for the pairs of projectors Q = Pμ,ε and
P = P0,0. The analyticity of (μ, ε) 	→ Uμ,ε ∈ L(Y ) follows by the

analyticity (μ, ε) 	→ Pμ,ε ∈ L(Y ) and of the map T 	→ (Id − T )− 1
2 in

L(Y ) for ‖T ‖L(Y ) < 1.
5. It follows from the conjugation formula (3.12). � 
The Hamiltonian and reversible nature of the operator Lμ,ε , see (3.3) and

(3.4), imply additional algebraic properties for spectral projectors Pμ,ε and
the transformation operators Uμ,ε .

Lemma 3.2 For any (μ, ε) ∈ B(μ0)× B(ε0), the following holds true:

(i) The projectors Pμ,ε defined in (3.5) are (complex) skew-Hamiltonian,
namely J Pμ,ε are skew-Hermitian
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J Pμ,ε = P∗μ,εJ , (3.15)

and reversibility preserving, i.e. ρPμ,ε = Pμ,ερ.
(ii) The transformation operators Uμ,ε in (3.10) are symplectic, namely

U∗
μ,εJUμ,ε = J ,

and reversibility preserving.
(iii) P0,ε and U0,ε are real operators, i.e. P0,ε = P0,ε and U0,ε = U0,ε .

Remark 3.3 The term (complex) skew-Hamiltonian is used in [23, Section 6]
for matrices.

Proof Let γ : [0, 1] → C be a counter-clockwise oriented parametrization of
�.

(i) SinceLμ,ε is Hamiltonian, it resultsLμ,εJ = −JL ∗
μ,ε on Y . Then, for

any scalar λ in the resolvent set of Lμ,ε , the number −λ belongs to the
resolvent of L ∗

μ,ε and

J (Lμ,ε − λ)−1 = −(L ∗
μ,ε + λ)−1J . (3.16)

Taking the adjoint of (3.5), we have

P∗μ,ε =
1

2π i

∫ 1

0

(L∗μ,ε − γ (t)
)−1

γ̇ (t)dt = 1

2π i

∮

�

(L∗μ,ε + λ
)−1 dλ ,

(3.17)
because the path−γ (t) winds around the origin clockwise. We conclude
that

J Pμ,ε
(3.5)= − 1

2π i

∮

�

J (
Lμ,ε − λ

)−1 dλ

(3.16)= 1

2π i

∮

�

(
L ∗

μ,ε + λ
)−1 J dλ

(3.17)= P∗μ,εJ .

Let us now prove that Pμ,ε is reversibility preserving. By (3.4) one has
(Lμ,ε − λ)ρ = ρ(−Lμ,ε − λ) and, for any scalar λ in the resolvent set
of Lμ,ε , we have ρ(Lμ,ε − λ)−1 = −(Lμ,ε + λ)−1ρ, using also that
(ρ)−1 = ρ. Thus, recalling (3.5) and (2.21), we have

ρPμ,ε = 1

2π i

∫ 1

0
− (

Lμ,ε + γ (t)
)−1

γ̇ (t)dt ρ

= − 1

2π i

∮

�

(Lμ,ε − λ)−1dλ ρ = Pμ,ερ ,

123



674 M. Berti et al.

because the path −γ (t) winds around the origin clockwise.
(i i) If an operator A is skew-Hamiltonian then Ak , k ∈ N, is skew-

Hamiltonian as well. As a consequence, being the projectors Pμ,ε , P0,0
and their difference skew-Hamiltonian, the operator(
Id − (Pμ,ε − P0,0)2

)−1/2 defined as in (3.9) is skew Hamiltonian as
well. Hence, by (3.10) we get

JUμ,ε =
[(
Id − (Pμ,ε − P0,0)

2)−1/2
]∗

× [
P0,0Pμ,ε + (Id − P0,0)(Id − Pμ,ε)

]∗ J (3.11)= U−∗
μ,εJ

and therefore U∗
μ,εJUμ,ε = J . Finally the operator Uμ,ε defined in

(3.10) is reversibility-preserving just as ρ commutes with Pμ,ε and P0,0.
(i i i) By (3.5) and sinceL0,ε is a real operator, we have

P0,ε = 1

2π i

∫ 1

0

(
L0,ε − γ (t)

)−1
γ̇ (t)dt = − 1

2π i

∮

�

(
L0,ε − λ

)−1 dλ = P0,ε

because the path γ (t) winds around the origin clockwise, proving that
the operator P0,ε is real. Then the operator U0,ε defined in (3.10) is real
as well. � 

By the previous lemma, the linear involution ρ commutes with the spectral
projectors Pμ,ε and then ρ leaves invariant the subspaces Vμ,ε = Rg(Pμ,ε).

Let us discuss the implications of the previous lemma in the setting of
complex symplectic structures, presented for example in [3,21]. The infinite
dimensional complex space L2(T, C

2), with scalar product (2.19), is equipped
with the complex symplectic form

Wc : L2(T, C
2)× L2(T, C

2) → C , Wc( f, g) := (J f, g) , (3.18)

which is sesquilinear, skew-Hermitian and non-degenerate, cfr. Definition 1 in
[21]. The skew-Hamiltonian property (3.15) of the projector Pμ,ε implies the
following lemma.

Lemma 3.4 For any (μ, ε), the linear subspace Vμ,ε = Rg(Pμ,ε) is a
complex symplectic subspace of L2(T, C

2), namely the symplectic formWc in
(3.18), restricted to Vμ,ε , is non-degenerate.

Proof Let f̃ ∈ Vμ,ε , thus f̃ = Pμ,ε f̃ . Suppose that Wc( f̃ , g̃) = 0 for any
g̃ = Pμ,εg ∈ Vμ,ε , g ∈ L2(T, C

2). Thus

0 = Wc( f̃ , g̃) = (J f̃ , Pμ,εg) = (P∗μ,εJ f̃ , g)
(3.15)= (J Pμ,ε f̃ , g) = (J f̃ , g) .
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We deduce that J f̃ = 0 and then f̃ = 0. � 
Remark 3.5 In view of Lemma 3.2-(i i) the transformation operator Uμ,ε is
symplectic, namelypreserves the symplectic form (3.18), i.e.Wc(Uμ,ε f,Uμ,εg)
= Wc( f, g), for any f, g ∈ L2(T, C

2).

Symplectic and reversible basis of Vμ,ε . It is convenient to represent the
Hamiltonian and reversible operator Lμ,ε : Vμ,ε → Vμ,ε in a basis which is
symplectic and reversible, according to the following definition.

Definition 3.6 (Symplectic andreversiblebasis)AbasisF := {f+1 , f−1 , f+0 ,

f−0 } of Vμ,ε is

• symplectic if, for any k, k′ = 0, 1,

(J f−k , f+k
) = 1 ,

(J fσ
k ,fσ

k

) = 0 , ∀σ = ±;
if k �= k′ then

(J fσ
k ,fσ ′

k′
) = 0 , ∀σ, σ ′ = ± .

(3.19)

• reversible if

ρf+1 = f+1 , ρf−1 = −f−1 , ρf+0 = f+0 , ρf−0 = −f−0 ,

i.e. ρfσ
k = σfσ

k , ∀σ = ±, k = 0, 1 .
(3.20)

Remark 3.7 By Remark 3.5, the operator Uμ,ε maps a symplectic basis in a
symplectic basis.

In the next lemma we outline a property of a reversible basis. We use the
following notation along the paper: we denote by even(x) a real 2π -periodic
function which is even in x , and by odd(x) a real 2π -periodic function which
is odd in x .

Lemma 3.8 The real and imaginary parts of the elements of a reversible basis
F = {f±k }, k = 0, 1, enjoy the following parity properties

f+k (x) =
[
even(x)+ i odd(x)
odd(x)+ i even(x)

]
, f−k (x) =

[
odd(x)+ i even(x)
even(x)+ i odd(x)

]
. (3.21)

Proof By the definition of the involution ρ in (2.21), we get

f+k (x) =
[
a(x)+ i b(x)
c(x)+ i d(x)

]
= ρf+k (x) =

[
a(−x)− i b(−x)
−c(−x)+ i d(−x)

]
#⇒ a, d even, b, c odd .

The properties of f−k follow similarly. � 
We now expand a vector of Vμ,ε along a symplectic basis.
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Lemma 3.9 Let F = {f+1 ,f−1 ,f+0 ,f−0 } be a symplectic basis of Vμ,ε . Then
any f in Vμ,ε has the expansion

f = − (J f , f−1
)
f+1 +

(J f , f+1
)
f−1 −

(J f , f−0
)
f+0 +

(J f , f+0
)
f−0 .

(3.22)

Proof We decompose f = α+1 f
+
1 + α−1 f

−
1 + α+0 f

+
0 + α−0 f

−
0 for suitable

coefficients ασ
k ∈ C. By applying J , taking the L2 scalar products with the

vectors {fσ
k }σ=±,k=0,1, using (3.19) and noting that

(J f+k , f−k
) = −1, we

get the expression of the coefficients ασ
k as in (3.22). � 

We now represent Lμ,ε : Vμ,ε → Vμ,ε with respect to a symplectic and
reversible basis.

Lemma 3.10 The 4×4matrix that represents the Hamiltonian and reversible
operator Lμ,ε = JBμ,ε : Vμ,ε → Vμ,ε with respect to a symplectic and
reversible basis F = {f+1 ,f−1 ,f+0 ,f−0 } of Vμ,ε is

J4Bμ,ε , J4 :=
(
J2 0
0 J2

)
, J2 :=

(
0 1
−1 0

)
, where Bμ,ε = B∗μ,ε

(3.23)

is the self-adjoint matrix

Bμ,ε =

⎛

⎜⎜
⎝

(
Bμ,ε f

+
1 ,f+1

) (
Bμ,ε f

−
1 ,f+1

) (
Bμ,ε f

+
0 ,f+1

) (
Bμ,ε f

−
0 ,f+1

)
(
Bμ,ε f

+
1 ,f−1

) (
Bμ,ε f

−
1 ,f−1

) (
Bμ,ε f

+
0 ,f−1

) (
Bμ,ε f

−
0 ,f−1

)
(
Bμ,ε f

+
1 ,f+0

) (
Bμ,ε f

−
1 ,f+0

) (
Bμ,ε f

+
0 ,f+0

) (
Bμ,ε f

−
0 ,f+0

)
(
Bμ,ε f

+
1 ,f−0

) (
Bμ,ε f

−
1 ,f−0

) (
Bμ,ε f

+
0 ,f−0

) (
Bμ,ε f

−
0 ,f−0

)

⎞

⎟⎟
⎠ .

(3.24)
The entries of the matrix Bμ,ε are alternatively real or purely imaginary: for
any σ = ±, k = 0, 1,

(
Bμ,ε f

σ
k , fσ

k′
)
is real,

(
Bμ,ε f

σ
k , f−σ

k′
)
is purely imaginary. (3.25)

Proof Lemma 3.9 implies that

Lμ,εf
σ
k = −

∑

k′=0,1,σ ′=±
σ ′

(JLμ,εf
σ
k ,f−σ ′

k′
)
fσ ′
k′

=
∑

k′=0,1,σ ′=±
σ ′

(
Bμ,εf

σ
k ,f−σ ′

k′
)
fσ ′
k′ .

Then the matrix representing the operator Lμ,ε : Vμ,ε → Vμ,ε with respect
to the basis F is given by J4Bμ,ε with Bμ,ε in (3.24). The matrix Bμ,ε is
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selfadjoint because Bμ,ε is a selfadjoint operator. We now prove (3.25). By
recalling (2.21) and (2.19) it results

( f , g) = (ρ f , ρg) . (3.26)

Then, by (3.26), since Bμ,ε is reversibility-preserving and (3.20), we get

(
Bμ,ε f

σ
k ,fσ ′

k′
) = (

ρBμ,ε fσ
k , ρfσ ′

k′
) = (

Bμ,ερ fσ
k , ρfσ ′

k′
)

= σσ ′
(
Bμ,ε fσ

k , fσ ′
k′
)
,

which proves (3.25). � 
Remark 3.11 The complex symplectic formWc in (3.18) restricted to the sym-
plectic subspace Vμ,ε is represented, in any symplectic basis (cfr. (3.19)), by
the matrix J4 in (3.23), acting in C

4 with the standard complex scalar product.

Hamiltonian and reversible matrices. It is convenient to give a name to the
matrices of the form obtained in Lemma 3.10.

Definition 3.12 A 2n × 2n, n = 1, 2, matrix of the form L = J2nB is

1. Hamiltonian if B is a self-adjoint matrix, i.e. B = B∗;
2. Reversible if B is reversibility-preserving, i.e. ρ2n ◦ B = B ◦ ρ2n , where

ρ4 :=
(

ρ2 0
0 ρ2

)
, ρ2 :=

(
c 0
0 −c

)
, (3.27)

and c : z 	→ z is the conjugation of the complex plane. Equivalently,
ρ2n ◦ L = −L ◦ ρ2n .

In the sequel we shall mainly deal with 4 × 4 Hamiltonian and reversible
matrices. The transformations preserving the Hamiltonian structure are called
symplectic, and satisfy

Y ∗J4Y = J4 . (3.28)

If Y is symplectic then Y ∗ and Y−1 are symplectic as well. A Hamiltonian
matrixL = J4B, withB = B∗, is conjugated through Y in the newHamiltonian
matrix

L1 = Y−1LY = Y−1J4Y
−∗Y ∗BY = J4B1 where B1 := Y ∗BY = B∗1 .

(3.29)
Note that the matrix ρ4 in (3.27) represents the action of the involution ρ :
Vμ,ε → Vμ,ε defined in (2.21) in a reversible basis (cfr. (3.20)). A 4 × 4
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matrix B = (Bi j )i, j=1,...,4 is reversibility-preserving if and only if its entries
are alternatively real and purely imaginary, namely Bi j is real when i + j is
even and purely imaginary otherwise, as in (3.25). A 4 × 4 complex matrix
L = (Li j )i, j=1,...,4 is reversible if and only if Li j is purely imaginary when
i + j is even and real otherwise.

In the sequel we shall use that the flow of a Hamiltonian reversibility-
preserving matrix is symplectic and reversibility-preserving.

Lemma 3.13 Let � be a self-adjoint and reversible matrix, then exp(τJ4�),
τ ∈ R, is a reversibility-preserving symplectic matrix.

Proof Theflowϕ(τ) := exp(τJ4�) solves d
dτ

ϕ(τ ) := J4�ϕ(τ), withϕ(0) =
Id. Then ψ(τ) := ϕ(τ)∗J4ϕ(τ) − J4 satisfies ψ(0) = 0 and d

dτ
ψ(τ) =

ϕ(τ)∗J∗4J4ϕ(τ) + ϕ(τ)∗J4J4ϕ(τ) = 0 . Then ψ(τ) = 0 for any τ and ϕ(τ)

is symplectic.
The matrix exp(τJ4�) = ∑

n≥0 1
n!(τJ4�)n is reversibility-preserving

since each (J4�)n , n ≥ 0, is reversibility-preserving. � 

4 Matrix representation ofLμ,ε on Vμ,ε

In this section we use the transformation operators Uμ,ε obtained in the pre-
vious section to construct a symplectic and reversible basis of Vμ,ε and, in
Proposition 4.4, we compute the 4 × 4 Hamiltonian and reversible matrix
representingLμ,ε : Vμ,ε → Vμ,ε on such basis.
First basis of Vμ,ε . In view of Lemma 3.1, the first basis of Vμ,ε that we
consider is

F := {
f +1 (μ, ε), f −1 (μ, ε), f +0 (μ, ε), f −0 (μ, ε)

}
,

f σ
k (μ, ε) := Uμ,ε f

σ
k , σ = ± , k = 0, 1 ,

(4.1)

obtained applying the transformation operators Uμ,ε in (3.10) to the vectors

f +1 =
[
cos(x)
sin(x)

]
, f −1 =

[− sin(x)
cos(x)

]
, f +0 =

[
1
0

]
, f −0 =

[
0
1

]
, (4.2)

which form a basis of V0,0 = Rg(P0,0), cfr. (2.27)-(2.28). Note that the real
valued vectors { f ±1 , f ±0 } are orthonormal with respect to the scalar product
(2.19), and satisfy

J f +1 = − f −1 , J f −1 = f +1 , J f +0 = − f −0 , J f −0 = f +0 , (4.3)

thus forming a symplectic and reversible basis forV0,0, according toDefinition
3.6.
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In view of Remarks 3.5 and 3.7, the symplectic operators Uμ,ε transform,
for any (μ, ε) small, the symplectic basis (4.2) of V0,0, into the symplectic
basis (4.1):

Lemma 4.1 The basis F of Vμ,ε defined in (4.1), is symplectic and reversible,
i.e. satisfies (3.19) and (3.20). Each map (μ, ε) 	→ f σ

k (μ, ε) is analytic as a
map B(μ0)× B(ε0) → H1(T).

Proof Since byLemma3.2-(i i) themapsUμ,ε are symplectic and reversibility-
preserving the transformed vectors f +1 (μ, ε), . . . , f −0 (μ, ε) are symplectic
orthogonals and reversible as well as the unperturbed ones f +1 , . . . , f −0 . The
analyticity of f σ

k (μ, ε) follows from the analyticity property of Uμ,ε proved
in Lemma 3.1. � 

In the next lemma we provide a suitable expansion of the vectors f σ
k (μ, ε)

in (μ, ε). We denote by even0(x) a real, even, 2π -periodic function with zero

space average. In the sequel O(μmεn)
[
even(x)
odd(x)

]
denotes an analytic map in

(μ, ε) with values in H1(T, C
2), whose first component is even(x) and the

second one odd(x); similar meaning for O(μmεn)
[
odd(x)
even(x)

]
, etc...

Lemma 4.2 (Expansion of the basis F) For small values of (μ, ε) the basis F
in (4.1) has the following expansion

f +1 (μ, ε) =
[
cos(x)
sin(x)

]
+ i

μ

4

[
sin(x)
cos(x)

]
+ ε

[
2 cos(2x)
sin(2x)

]

+O(μ2)

[
even0(x)+ i odd(x)
odd(x)+ i even0(x)

]
+O(ε2)

[
even0(x)
odd(x)

]

+ iμε

[
odd(x)
even(x)

]
+O(μ2ε, με2) , (4.4)

f −1 (μ, ε) =
[− sin(x)
cos(x)

]
+ i

μ

4

[
cos(x)
− sin(x)

]
+ ε

[−2 sin(2x)
cos(2x)

]

+O(μ2)

[
odd(x)+ i even0(x)
even0(x)+ i odd(x)

]
+O(ε2)

[
odd(x)
even(x)

]

+ iμε

[
even(x)
odd(x)

]
+O(μ2ε, με2) , (4.5)

f +0 (μ, ε) =
[
1
0

]
+ ε

[
cos(x)
− sin(x)

]
+O(ε2)

[
even0(x)
odd(x)

]

+ iμε

[
odd(x)
even0(x)

]
+O(μ2ε, με2) , (4.6)
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f −0 (μ, ε) =
[
0
1

]
+ με

([
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

])
+O(μ2ε, με2) ,

(4.7)

where the remainders O() are vectors in H1(T). For μ = 0 the basis
{ f ±k (0, ε), k = 0, 1} is real and

f +1 (0, ε) =
[
even0(x)
odd(x)

]
, f −1 (0, ε) =

[
odd(x)
even(x)

]
,

f +0 (0, ε) =
[
1
0

]
+

[
even0(x)
odd(x)

]
, f −0 (0, ε) =

[
0
1

]
.

(4.8)

Proof The long calculations are given in Appendix A. � 
Second basis of Vμ,ε . We now construct from the basis F in (4.1) another
symplectic and reversible basis of Vμ,ε with an additional property. Note that
the second component of the vector f −1 (0, ε) is an even function whose space
average is not necessarily zero, cfr. (4.8). Thuswe introduce the newsymplectic
and reversible basis of Vμ,ε

G := {
g+1 (μ, ε), g−1 (μ, ε), g+0 (μ, ε), g−0 (μ, ε)

}
,

defined by

g+1 (μ, ε) := f +1 (μ, ε) , g−1 (μ, ε) := f −1 (μ, ε)− n(μ, ε) f −0 (μ, ε) ,

g+0 (μ, ε) := f +0 (μ, ε)+ n(μ, ε) f +1 (μ, ε) , g−0 (μ, ε) := f −0 (μ, ε) ,
(4.9)

with

n(μ, ε) :=
(
f −1 (μ, ε) , f −0 (μ, ε)

)

‖ f −0 (μ, ε)‖2 . (4.10)

Note that n(μ, ε) is real, because, in view of (3.26) and Lemma 4.1,

n(μ, ε) :=
(
ρ f −1 (μ, ε) , ρ f −0 (μ, ε)

)

‖ f −0 (μ, ε)‖2 =
(
f −1 (μ, ε) , f −0 (μ, ε)

)

‖ f −0 (μ, ε)‖2 = n(μ, ε) .

(4.11)
This new basis has the property that g−1 (0, ε) has zero average, see (4.21). We
shall exploit this feature crucially in Lemma 4.7, see remark 4.8.

Lemma 4.3 The basis G in (4.9) is symplectic and reversible, i.e. it satisfies
(3.19) and (3.20). Each map (μ, ε) 	→ gσ

k (μ, ε) is analytic as a map B(μ0)×
B(ε0) → H1(T, C

2).
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Proof The vectors g±k (μ, ε), k = 0, 1 satisfy (3.19) and (3.20) because
f ±k (μ, ε), k = 0, 1 satisfy the same properties as well, and n(μ, ε) is real. The
analyticity of gσ

k (μ, ε) follows from the corresponding property of the basis
F. � 

We now state the main result of this section.

Proposition 4.4 The matrix that represents the Hamiltonian and reversible
operator Lμ,ε : Vμ,ε → Vμ,ε in the symplectic and reversible basis G of
Vμ,ε defined in (4.9), is a Hamiltonian matrix Lμ,ε = J4Bμ,ε , where Bμ,ε is
a self-adjoint and reversibility preserving (i.e. satisfying (3.25)) 4× 4 matrix
of the form

Bμ,ε =
(
E F
F∗ G

)
, E = E∗ , G = G∗ , (4.12)

where E, F,G are the 2× 2 matrices

E :=
(

ε2(1+ r ′1(ε, με2))− μ2

8 (1+ r ′′1 (ε, μ)) i
(1
2μ+ r2(με2, μ2ε, μ3)

)

−i
(1
2μ+ r2(με2, μ2ε, μ3)

) −μ2

8 (1+ r5(ε, μ))

)

(4.13)

G :=
(
1+ r8(ε3, μ2ε, με2, μ3) −i r9(με2, μ2ε, μ3)

i r9(με2, μ2ε, μ3) μ+ r10(μ2ε, μ3)

)
(4.14)

F =
(
r3(ε3, με2, μ2ε, μ3) i r4(με, μ3)

i r6(με, μ3) r7(μ2ε, μ3)

)
. (4.15)

The rest of this section is devoted to the proof of Proposition 4.4. The first
step is to provide the following expansion in (μ, ε) of the basis G.
Lemma 4.5 (Expansion of the basis G) For small values of (μ, ε), the basis
G defined in (4.9) has the following expansion

g+1 (μ, ε) =
[
cos(x)
sin(x)

]
+ i

μ

4

[
sin(x)
cos(x)

]
+ ε

[
2 cos(2x)
sin(2x)

]

+O(μ2)

[
even0(x)+ i odd(x)
odd(x)+ i even0(x)

]
+O(ε2)

[
even0(x)
odd(x)

]

+ iμε

[
odd(x)
even(x)

]
+O(μ2ε, με2) , (4.16)

g−1 (μ, ε) =
[− sin(x)
cos(x)

]
+ i

μ

4

[
cos(x)
− sin(x)

]
+ ε

[−2 sin(2x)
cos(2x)

]

+O(μ2)

[
odd(x)+ i even0(x)
even0(x)+ i odd(x)

]
+O(ε2)

[
odd(x)
even0(x)

]
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+ iμε

[
even(x)
odd(x)

]
+O(μ2ε, με2) , (4.17)

g+0 (μ, ε) =
[
1
0

]
+ ε

[
cos(x)
− sin(x)

]
+O(ε2)

[
even0(x)
odd(x)

]

+ iμε

[
odd(x)
even0(x)

]
+O(μ2ε, με2) , (4.18)

g−0 (μ, ε) =
[
0
1

]
+ με

([
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

])
+O(μ2ε, με2) .

(4.19)

In particular, at μ = 0, the basis {gσ
k (0, ε), σ = ±, k = 0, 1} is real,

g+1 (0, ε) =
[
even0(x)
odd(x)

]
, g−1 (0, ε) =

[
odd(x)
even0(x)

]
,

g+0 (0, ε) =
[
1
0

]
+

[
even0(x)
odd(x)

]
, g−0 (0, ε) =

[
0
1

]
,

(4.20)

and, for any ε, ∫

T

g−1 (0, ε) dx = 0 . (4.21)

Proof First note that, by (4.8), f −0 (0, ε) =
[
0
1

]
, and thus g−1 (0, ε) in (4.9)

reduces to

g−1 (0, ε) = f −1 (0, ε)−
(
f −1 (0, ε),

[
0
1

] ) [
0
1

]
,

which satisfies (4.21), recalling also that the first component of f −1 (0, ε) is
odd. In order to prove (4.16)-(4.19) we note that n(μ, ε) in (4.10) is real by
(4.11), and satisfies, by (4.5), (4.7),

n(μ, ε) = 1

1+ r(μ2ε, με2)

×
[
r(ε2)+ με

( [− sin(x)
cos(x)

]
,

[
sin(x)
cos(x)

] )
+ r(μ2ε, με2)

]

= r(ε2, μ2ε, με2) .

Hence, in viewof (4.4)-(4.7), the vectors gσ
k (μ, ε) satisfy the expansion (4.16)-

(4.19). Finally atμ = 0 the vectors g±k (0, ε), k = 0, 1, are real being real linear
combinations of real vectors. � 
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We start now the proof of Proposition 4.4. It is useful to decompose Bμ,ε

in (3.3) as
Bμ,ε = Bε + B� + B� ,

where Bε , B�, B� are the self-adjoint and reversibility preserving operators

Bε := B0,ε :=
[

1+ aε(x) −(1+ pε(x))∂x
∂x ◦ (1+ pε(x)) |D|

]
, (4.22)

B� := μ

[
0 0
0 g(D)

]
, g(D) = sgn(D)+
0 , (4.23)

B� := μ

[
0 −i pε

i pε 0

]
. (4.24)

Note that the operators B�, B� are linear in μ. In order to prove (4.12)- (4.15)
we exploit the representation Lemma 3.10 and compute perturbatively the
4 × 4 matrices, associated, as in (3.24), to the self-adjoint and reversibility
preserving operators Bε , B� and B�, in the basis G.
Lemma 4.6 (Expansion of Bε) The self-adjoint and reversibility preserv-
ing matrix Bε := Bε(μ) associated, as in (3.24), with the self-adjoint and
reversibility preserving operator Bε , defined in (4.22), with respect to the
basis G of Vμ,ε in (4.9), expands as

Bε =

⎛

⎜
⎜⎜
⎜
⎝

ε2 + μ2

8 + r1(ε3, με4) i r2(με3) r3(ε3, με2) i r4(με3)

−i r2(με3)
μ2

8 i r6(με) 0

r3(ε3, με2) −i r6(με) 1+ r8(ε3, με2) i r9(με2)

−i r4(με3) 0 −i r9(με2) 0

⎞

⎟
⎟⎟
⎟
⎠

+O(μ2ε, μ3) . (4.25)

Proof We expand the matrix Bε(μ) as

Bε(μ) = Bε(0)+ μ(∂μBε)(0)+ μ2

2
(∂2μB0)(0)+O(μ2ε, μ3) . (4.26)

To simplify notation, during this proof we often identify a matrix with its
matrix elements.

The matrix Bε(0). The main result of this long paragraph is to prove that
the matrix Bε(0) has the expansion (4.30). The matrix Bε(0) is real, because
the operator Bε is real and the basis {g±k (0, ε)}k=0,1 is real. Consequently, by
(3.25), its matrix elements (Bε(0))i, j are real whenever i+ j is even and vanish

for i + j odd. In addition g−0 (0, ε) =
[
0
1

]
by (4.20), and, by (4.22), we get
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Bεg
−
0 (0, ε) = 0, for any ε. We deduce that the self-adjoint matrix Bε(0) has

the form

Bε(0) =
(
Bε g

σ
k (0, ε), gσ ′

k′ (0, ε)
)

k,k′=0,1,σ,σ ′=± =

⎛

⎜
⎜
⎝

a 0
0 b

α 0
0 0

α 0
0 0

c 0
0 0

⎞

⎟
⎟
⎠ , (4.27)

with a, b, c, α real numbers depending on ε. We claim that b = 0 for any ε.
As a first step we prove that

either b = 0 , or b �= 0 and a = 0 = α . (4.28)

Indeed, by Theorem 4.1 in [43], the operator L0,ε ≡ L0,ε possesses, for any
sufficiently small ε �= 0, the eigenvalue 0 with a four dimensional gener-
alized Kernel Wε := span{U1, Ũ2,U3,U4}, spanned by ε-dependent vectors
U1, Ũ2,U3,U4 satisfying (2.30).Note thatU1, Ũ2 are eigenvectors, andU3,U4
generalized eigenvectors, ofL0,ε with eigenvalue 0. By Lemma 3.1 it results
that Wε = V0,ε = Rg(P0,ε) and by (2.30) we have L 2

0,ε = 0 on V0,ε . Thus
the matrix

Lε(0) := J4Bε(0) =

⎛

⎜⎜
⎝

0 b
−a 0

0 0
−α 0

0 0
−α 0

0 0
−c 0

⎞

⎟⎟
⎠ , (4.29)

which representsL0,ε : V0,ε → V0,ε , satisfies L2
ε(0) = 0, namely

L2
ε(0) =

⎛

⎜
⎜
⎝

−ab 0
0 −ab

−αb 0
0 0

0 0
0 −αb

0 0
0 0

⎞

⎟
⎟
⎠ = 0 .

This implies (4.28). We now prove that the matrix Bε(0) defined in (4.27)
expands as

Bε(0) =

⎛

⎜⎜
⎝

a 0
0 b

α 0
0 0

α 0
0 0

c 0
0 0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

ε2 + r(ε3) 0 r(ε3) 0
0 0 0 0

r(ε3) 0 1+ r(ε3) 0
0 0 0 0

⎞

⎟⎟
⎠ . (4.30)

We expand the operator Bε in (4.22) as

Bε = B0 + εB1 + ε2B2 +O(ε3), B0 :=
[
1 −∂x
∂x |D|

]
,
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B j :=
[

a j (x) −p j (x)∂x
∂x ◦ p j (x) 0

]
, j = 1, 2 , (4.31)

where the remainder term O(ε3) ∈ L(Y, X) and, by (2.15)-(2.16),

a1(x) = p1(x) = −2 cos(x), a2(x) = 2−2 cos(2x), p2(x) = 3

2
−2 cos(2x) .

(4.32)
• Expansion of a = ε2 + r(ε3). By (4.16) we split the real function g+1 (0, ε)
as

g+1 (0, ε) = f +1 + εg+11 + ε2g+12 +O(ε3), f +1 =
[
cos(x)
sin(x)

]
,

g+11 :=
[
2 cos(2x)
sin(2x)

]
, g+12 :=

[
even0(x)
odd(x)

]
,

(4.33)

where both g+12 andO(ε3) are vectors inH1(T). SinceB0 f
+
1 = J −1L0,0 f

+
1 =

0, and both B0, B1 are self-adjoint real operators, it results

a = (
Bεg

+
1 (0, ε) , g+1 (0, ε)

)

= ε
(
B1 f

+
1 , f +1

)+ ε2
[(
B2 f

+
1 , f +1

)+ 2
(
B1 f

+
1 , g+11

)
+

(
B0g

+
11

, g+11
)]

+O(ε3) . (4.34)

By (4.31) one has

B1 f
+
1 =

[
0

2 sin(2x)

]
, B2 f

+
1 =

[ 1
2 cos(x)

3 sin(3x)− 1
2 sin(x)

]
,

B0g
+
11
=

[
0

−2 sin(2x)

]
= −B1 f

+
1 .

(4.35)

Then the ε2-term of a is
(
B2 f

+
1 , f +1

)+
(
B1 f

+
1 , g+11

)
and, by (4.34), (4.35),

(4.33), a direct computation gives a = ε2 + r(ε3) as stated in (4.30).
In particular, for ε �= 0 sufficiently small, one has a �= 0 and the second

alternative in (4.28) is ruled out, implying b = 0.
• Expansion of c = 1 + r(ε3). By (4.18) we split the real-valued function
g+0 (0, ε) as

g+0 (0, ε) = f +0 + εg+01 + ε2g+02 +O(ε3) , f +0 =
[
1
0

]
,

g+01 :=
[
cos(x)
− sin(x)

]
, g+02 :=

[
even0(x)
odd(x)

]
.

(4.36)
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Since, by (2.27) and (4.31),B0 f
+
0 = f +0 , and bothB0,B1 are self-adjoint real

operators,

c = (
Bεg

+
0 (0, ε) , g+0 (0, ε)

)

= 1+ ε
(
B1 f

+
0 , f +0

)
(4.37)

+ ε2
[(
B2 f

+
0 , f +0

)+ 2
(
B1 f

+
0 , g+01

)
+

(
B0g

+
01

, g+01
)]
+ r(ε3) ,

where we also used ‖ f +0 ‖ = 1 and ( f +0 , g+01) = ( f +0 , g+02) = 0. By (4.31),
(4.32) one has

B1 f
+
0 = 2

[− cos(x)
sin(x)

]
, B2 f

+
0 =

[
2− 2 cos(2x)
4 sin(2x)

]
,

B0g
+
01
= 2

[
cos(x)
− sin(x)

]
= −B1 f

+
0 .

(4.38)

Then the ε2-term of c is
(
B2 f

+
0 , f +0

)+
(
B1 f

+
0 , g+01

)
and, by (4.36)-(4.38),

we conclude that c = 1+ r(ε3) as stated in (4.30).
• Expansion of α = O(ε3). By (4.33), (4.36) and since B0,B1 are self-adjoint
and real we have

α = (
Bεg

+
1 (0, ε) , g+0 (0, ε)

) = (
B0 f

+
1 , f +0

)

+ ε
[(
B1 f

+
1 , f +0

)+
(
B0 f

+
1 , g+01

)
+

(
B0g

+
11

, f +0
)]

+ ε2
[ (

B2 f
+
1 , f +0

)+
(
B1 f

+
1 , g+01

)
+

(
B1 f

+
0 , g+11

)
+

(
B0g

+
12

, f +0
)

+
(
B0g

+
11

, g+01
)
+

(
B0 f

+
1 , g+02

) ]+ r(ε3) .

Recalling that B0 f
+
1 = 0 and B0 f

+
0 = f +0 , we arrive at

α = ε
[(
B1 f

+
1 , f +0

)+
(
g+11 , f +0

)]

+ ε2
[ (

B2 f
+
1 , f +0

)+
(
B1 f

+
1 , g+01

)
+

(
B1 f

+
0 , g+11

)
+

(
g+12 , f +0

)

+
(
B0g

+
11

, g+01
) ]+ r(ε3) = r(ε3) ,

using that, by (4.33), (4.35), (4.36) (4.38), all the scalar products in the formula
vanish.
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We have proved the expansion (4.30).

Linear terms in μ. We now compute the terms of Bε(μ) that are linear in μ.
It results

∂μBε(0) = X + X∗ where X := (
Bεg

σ
k (0, ε), (∂μg

σ ′
k′ )(0, ε)

)
k,k′=0,1,σ,σ ′=± .

(4.39)
We now prove that

X =

⎛

⎜⎜
⎝

O(ε4) 0 O(ε2) 0
O(ε3) 0 O(ε) 0
O(ε4) 0 O(ε2) 0
O(ε3) 0 O(ε2) 0

⎞

⎟⎟
⎠ . (4.40)

The matrix Lε(0) in (4.29) where b = 0, represents the action of the
operator L0,ε : V0,ε → V0,ε in the basis {gσ

k (0, ε)} and then we deduce
that L0,εg

−
1 (0, ε) = 0, L0,εg

−
0 (0, ε) = 0. Thus also Bεg

−
1 (0, ε) = 0,

Bεg
−
0 (0, ε) = 0, for every ε, and the second and the fourth column of the

matrix X in (4.40) are zero. In order to compute the other two columns we
use the expansion of the derivatives, where denoting with a dot the derivative
w.r.t. μ,

ġ+1 (0, ε) = i

4

[
sin(x)
cos(x)

]
+ i ε

[
odd(x)
even(x)

]
+O(ε2) ,

ġ+0 (0, ε) = i ε

[
odd(x)
even0(x)

]
+O(ε2) ,

ġ−1 (0, ε) = i

4

[
cos(x)
− sin(x)

]
+ i ε

[
even(x)
odd(x)

]
+O(ε2) ,

ġ−0 (0, ε) = ε
( [

sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

] )
+O(ε2)

(4.41)

that follow by (4.16)-(4.19). In view of (4.3), (4.16)-(4.19), (4.29) and since
Bεgσ

k (0, ε) = −JLεgσ
k (0, ε), we have

Bεg
+
1 (0, ε) = (

ε2 + r(ε3)
)J g−1 (0, ε)+ r(ε3)J f −0

= ε2
[
cos(x)
sin(x)

]
+ r(ε3)

( [
1
0

]
+

[
even0(x)
odd(x)

] )
,

Bεg
+
0 (0, ε) = r(ε3)J g−1 (0, ε)+ (

1+ r(ε3)
)J f −0

=
[
1
0

]
+ r(ε3)

( [
1
0

]
+

[
even0(x)
odd(x)

] )
.

(4.42)
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The other two columns of the matrix X in (4.39) have the expansion (4.40),
by (4.41) and (4.42).

Quadratic terms in μ. By denoting with a double dot the double derivative
w.r.t. μ, we have

∂2μB0(0) =
(
B0 f

σ
k , g̈σ ′

k′ (0, 0)
)
+

(
g̈σ
k (0, 0) , B0 f

σ ′
k

)

+2
(
B0ġ

σ
k (0, 0) , ġσ ′

k′ (0, 0)
)
=: Y + Y ∗ + 2Z .

(4.43)

We claim that Y = 0. Indeed, its first, second and fourth column are zero,
since B0 f σ

k = 0 for f σ
k ∈ { f +1 , f −1 , f −0 }. The third column is also zero by

noting that B0 f
+
0 = f +0 and

g̈+1 (0, 0) =
[
even0(x)+ i odd(x)
odd(x)+ i even0(x)

]
, g̈−1 (0, 0) =

[
odd(x)+ i even0(x)
even0(x)+ i odd(x)

]
,

g̈+0 (0, 0) = g̈−0 (0, 0) = 0 .

We claim that

Z =
(
B0ġ

σ
k (0, 0) , ġσ ′

k′ (0, 0)
)
k,k′=0,1,
σ,σ ′=±

=

⎛

⎜⎜
⎝

1
8 0 0 0
0 1

8 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ . (4.44)

Indeed, by (4.41), we have ġ+0 (0, 0) = ġ−0 (0, 0) = 0. Therefore the last two
columns of Z , and by self-adjointness the last two rows, are zero. By (4.41),

ġ+1 (0, 0) = i
4

[
sin(x)
cos(x)

]
and ġ−1 (0, 0) = i

4

[
cos(x)
− sin(x)

]
, so that B0ġ

+
1 (0, 0) =

i
2

[
sin(x)
cos(x)

]
and B0ġ

−
1 (0, 0) = i

2

[
cos(x)
− sin(x)

]
, and we obtain the matrix (4.44)

computing the scalar products.
In conclusion (4.26), (4.39), (4.40), (4.43), the fact that Y = 0 and (4.44)

imply (4.25), using also the selfadjointness of Bε and (3.25). � 

We now consider B�.

Lemma 4.7 (Expansion of B�) The self-adjoint and reversibility-preserving
matrix B� associated, as in (3.24), to the self-adjoint and reversibility-
preserving operator B�, defined in (4.23), with respect to the basis G of Vμ,ε
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in (4.9), admits the expansion

B� =

⎛

⎜
⎜⎜
⎝

−μ2

4 i (μ
2 + r2(με2)) 0 0

−i (μ
2 + r2(με2)) −μ2

4 i r6(με) 0
0 −i r6(με) 0 0
0 0 0 μ

⎞

⎟
⎟⎟
⎠
+O(μ2ε, μ3) .

(4.45)

Proof We have to compute the expansion of the matrix entries (B�gσ
k (μ, ε),

gσ ′
k′ (μ, ε)). The operator B� in (4.23) is linear in μ and by (4.16), (4.17),

(4.21) and the identities sgn(D) sin(kx) = −i cos(kx) and sgn(D) cos(kx) =
i sin(kx) for any k ∈ N, we have

B�g+1 (μ, ε) = −iμ

[
0

cos(x)

]
− μ2

4

[
0

sin(x)

]
− iμε

[
0

cos(2x)

]

+ iO(με2)

[
0

even0(x)

]
+O(μ2ε, μ3) ,

B�g−1 (μ, ε) = iμ

[
0

sin(x)

]
− μ2

4

[
0

cos(x)

]
+ iμε

[
0

sin(2x)

]

+ iO(με2)

[
0

odd(x)

]
+O(μ2ε, μ3) .

Note that μ
[
0 0
0 
0

]
g−1 (μ, ε) = O(μ3ε, μ2ε2) thanks to the property (4.21) of

the basis G.
In addition, by (4.18)-(4.19), we get that

B�g+0 (μ, ε) = iμε

[
0

cos(x)

]
+ iO(με2)

[
0

even0(x)

]
+O(μ2ε) ,

B�g−0 (μ, ε) =
[
0
μ

]
+O(μ2ε) .

Taking the scalar products of the above expansions of B�gσ
k (μ, ε) with the

functions gσ ′
k′ (μ, ε) expanded as in (4.16)-(4.19) we deduce (4.45). � 

Remark 4.8 The (2, 2) entry in the matrix B� in (4.45) has no terms O(μεk),
thanks to property (4.21). This property is fundamental in order to verify that

the (2, 2) entry of the matrix E in (4.13) starts with −μ2

8 and therefore it is
negative for μ small. Such property does not hold for the first basis F defined
in (4.1), and this motivates the use of the second basis G.

Finally we consider B�.
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Lemma 4.9 (Expansion of B�) The self-adjoint and reversibility-preserving
matrix B� associated, as in (3.24), to the self-adjoint and reversibility-
preserving operators B�, defined in (4.24), with respect to the basis G of Vμ,ε

in (4.9), admits the expansion

B� =

⎛

⎜
⎜
⎝

0 i r2(με2) 0 i r4(με)

−i r2(με2) 0 −i r6(με) 0
0 i r6(με) 0 −i r9(με2)

−i r4(με) 0 i r9(με2) 0

⎞

⎟
⎟
⎠+O(μ2ε) . (4.46)

Proof Since B� = −iμpεJ and pε = O(ε) by (2.15), we have the expansion

(
B�gσ

k (μ, ε), gσ ′
k′ (μ, ε)

) = (
B�gσ

k (0, ε), gσ ′
k′ (0, ε)

)+O(μ2ε) . (4.47)

We claim that the matrix entries (B�gσ
k (0, ε), gσ

k′(0, ε)), k, k
′ = 0, 1 are zero.

Indeed they are real by (3.25), and also purely imaginary, since the operator
B� is purely imaginary5 and the basis {g±k (0, ε)}k=0,1 is real. Hence B� has
the form

B� =

⎛

⎜
⎜
⎝

0 i β 0 i δ
−i β 0 −i γ 0
0 i γ 0 i η
−i δ 0 −i η 0

⎞

⎟
⎟
⎠+O(μ2ε) where

⎧
⎪⎪⎨

⎪⎪⎩

(
B�g−1 (0, ε) , g+1 (0, ε)

) =: i β ,(
B�g−1 (0, ε) , g+0 (0, ε)

) =: i γ ,(
B�g−0 (0, ε) , g+1 (0, ε)

) =: i δ ,(
B�g−0 (0, ε) , g+0 (0, ε)

) =: i η ,

(4.48)

and α, β, γ , δ are real numbers. As B� = O(με) in L(Y ), we get immediately
that γ = r(με) and δ = r(με). Next we compute the expansion of β and η.
We split the operator B� in (4.24) as

B� = iμεB
�
1 +O(με2) , B

�
1 := −p1(x)J , (4.49)

with p1(x) in (4.32) andO(με2) ∈ L(Y ). By (4.49) and the expansion (4.16)-
(4.19), g+1 (0, ε) = f +1 +O(ε), g−1 (0, ε) = f −1 +O(ε), g+0 (0, ε) = f +0 +O(ε),

g−0 (0, ε) =
[
0
1

]
we obtain

β = με
(
B

�
1 f

−
1 , f +1

)
+ r(με2) , η = με

(
B

�
1 f

−
0 , f +0

)
+ r(με2) .

5 An operator A is purely imaginary if A = −A. A purely imaginary operator sends real
functions into purely imaginary ones.
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Computing B
�
1 f

−
1 =

[
1+ cos(2x)
sin(2x)

]
, B�

1 f
−
0 =

[
2 cos(x)

0

]
and the various scalar

products with the vectors f σ
k in (4.2), we get β = r(με2), η = r(με2). Using

also (4.47) and (4.48), one gets (4.46). � 

Lemmata 4.6, 4.7 and 4.9 imply Proposition 4.4.

5 Block-decoupling

The 4 × 4 Hamiltonian and reversible matrix Lμ,ε = J4Bμ,ε obtained in
Proposition 4.4, has the form

Lμ,ε = J4

(
E F
F∗ G

)
=

(
J2E J2F
J2F∗ J2G

)
, (5.1)

where E,G, F are the 2 × 2 matrices in (4.13)-(4.15). In particular J2E has the
form

J2E =
(

−i (μ
2 + r2(με2, μ2ε, μ3)

) −μ2

8 (1+ r5(ε, μ))

−ε2(1+ r ′1(ε, με2))+ μ2

8 (1+ r ′′1 (ε, μ)) −i (μ
2 + r2(με2, μ2ε, μ3)

)

)

(5.2)
and therefore possesses two eigenvalues with non-zero real part (“Benjamin-
Feir” eigenvalues), as long as its two off-diagonal entries have the same sign,
see the discussion below (2.36). In order to prove that also the full 4 × 4
matrix Lμ,ε in (5.1) possesses Benjamin-Feir unstable eigenvalues, we aim
to eliminate the coupling term J2F by a change of variables. More precisely
in this section we conjugate the matrix Lμ,ε in (5.1) to the Hamiltonian and

reversible block-diagonal matrix L(3)
μ,ε in (5.35),

L(3)
μ,ε =

(
J2E (3) 0

0 J2G(3)

)
,

where J2E (3) is a 2 × 2 matrix with the same form as (5.2) (clearly with
different remainders, but of the same order). The spectrum of the 4× 4 matrix
L(3)

μ,ε , which coincides with that of Lμ,ε , contains the Benjamin-Feir unstable
eigenvalues of the 2 × 2 matrix J2E (3) (it turns out that the two eigenvalues
of J2G(3) are purely imaginary). This will prove Theorem 2.3.

The block-diagonalization of Lμ,ε is achieved in three steps, in Lemma 5.1,
Lemma 5.2, and finally Lemma 5.8. Motivations and goals of each step were
described at the end of Sect. 2.
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5.1 First step of Block-decoupling

We write the matrices E, F,G in (4.12) as

E =
(

E11 i E12
−i E12 E22

)
, F =

(
F11 i F12
i F21 F22

)
, G =

(
G11 iG12

−iG12 G22

)
(5.3)

where the real numbers Ei j , Fi j ,Gi j , i, j = 1, 2, have the expansion given in
(4.13)-(4.15).

Lemma 5.1 Conjugating the Hamiltonian and reversible matrix Lμ,ε =
J4Bμ,ε obtained in Proposition 4.4 through the symplectic and reversibility-
preserving 4× 4-matrix

Y = Id4 + m

(
0 −P
Q 0

)
with Q :=

(
1 0
0 0

)
, P :=

(
0 0
0 1

)
,

m := m(μ, ε) := − F11(μ, ε)

G11(μ, ε)
,

(5.4)

where m = r(ε3, με2, μ2ε, μ3) is a real number, we obtain the Hamiltonian
and reversible matrix

L(1)
μ,ε := Y−1Lμ,εY = J4B

(1)
μ,ε =

(
J2E (1) J2F (1)

J2[F (1)]∗ J2G(1)

)
(5.5)

where B(1)
μ,ε is a self-adjoint and reversibility-preserving 4× 4 matrix

B(1)
μ,ε =

(
E (1) F (1)

[F (1)]∗ G(1)

)
, E (1) = [E (1)]∗ , G(1) = [G(1)]∗ , (5.6)

where the 2× 2 matrices E (1), G(1) have the same expansion (4.13)-(4.14) of
E,G and

F (1) =
(

0 i r4(με, μ3)

i r6(με, μ3) r7(μ2ε, μ3)

)
. (5.7)

Note that the entry F (1)
11 is 0, the other entries of F (1) have the same size as

for F in (4.15).

Proof The matrix Y is symplectic, i.e. (3.28) holds, and since m is real, it is
reversibility preserving, i.e. satisfies (3.25). By (3.29),

B(1)
μ,ε = Y ∗Bμ,εY =

(
E (1) F (1)

[F (1)]∗ G(1)

)
, (5.8)
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where, by (5.4) and (5.3), the self-adjoint matrices E (1),G(1) are

E (1) := E + m(QF∗ + FQ)+ m2QGQ

= E +
(
2mF11 + m2G11 −imF21

imF21 0

)
,

G(1) := G − m(PF + F∗P)+ m2PEP

= G +
(

0 imF21
−imF21 −2mF22 + m2E22

)
.

(5.9)

Similarly, the off-diagonal 2× 2 matrix F (1) is

F (1) := F + m(QG − EP)− m2QF∗P

=
(

0 i (F12 + mG12 − mE12 + m2F21)
i F21 F22 − mE22

)
, (5.10)

where we have used that the first entry of this matrix is F11 + mG11 = 0, by
the definition of m in (5.4). By (5.8)-(5.10) and (4.13)-(4.15) we deduce the
expansion of B(1)

μ,ε in (5.7), (5.6) and consequently that of (5.5). � 

5.2 Second step of block-decoupling

We now perform a further step of block decoupling, obtaining the new Hamil-
tonian and reversible matrix L(2)

μ,ε in (5.13) where the 2× 2 matrix J2E (2) has
still the Benjamin-Feir unstable eigenvalues and the size of the new coupling
matrix J2F (2) is much smaller than J2F (1). In particular note that the entries
of F (2) in (5.14) have size O(μ2ε3, μ3ε2, μ5ε, μ7) whereas those of F (1) in
(5.7) are O(με3, μ3).

Lemma 5.2 (Step of block-decoupling) There exists a 2 × 2 reversibility-
preserving matrix X, analytic in (μ, ε), of the form

X =
(
x11 i x12
i x21 x22

)
=

(
r11(μ2, με) i r12(μ3, με)

i r21(ε, μ2) r22(μ3, με)

)
, x11, x12, x21, x22 ∈ R ,

(5.11)
such that, by conjugating the Hamiltonian and reversible matrix L(1)

μ,ε , defined
in (5.5), with the symplectic and reversibility-preserving 4× 4 matrix

exp
(
S(1)

)
, where S(1) := J4

(
0 �

�∗ 0

)
, � := J2X , (5.12)
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we get the Hamiltonian and reversible matrix

L(2)
μ,ε := exp

(
S(1)

)
L(1)

μ,ε exp
(
−S(1)

)
= J4B

(2)
μ,ε =

(
J2E (2) J2F (2)

J2[F (2)]∗ J2G(2)

)
,

(5.13)
where the 2 × 2 self-adjoint and reversibility-preserving matrices E (2), G(2)

have the same expansion of E (1), G(1), namely of E,G, given in (4.13)-(4.14),
and

F (2) =
(
F (2)
11 i F (2)

12
i F (2)

21 F (2)
22

)

=
(
r3(μ2ε3, μ3ε2, μ5ε, μ7) i r4(μ2ε3, μ4ε2, μ5ε, μ7)

i r6(μ2ε3, μ4ε2, μ5ε, μ7) r7(μ3ε3, μ4ε2, μ6ε, μ8)

)
.

(5.14)

Remark 5.3 The new matrix L(2)
μ,ε in (5.13) is still analytic in (μ, ε), as L(1)

μ,ε .
This is not obvious a priori, since the spectrum of the matrices J2E (1) and
J2G(1) is shrinking to zero as (μ, ε) → 0.

The rest of the section is devoted to the proof of Lemma 5.2. We denote for
simplicity S = S(1).

The matrix exp(S) is symplectic and reversibility preserving because the
matrix S in (5.12) is Hamiltonian and reversibility preserving, cfr. Lemma
3.13. Note that S is reversibility preserving since X has the form (5.11).

We now expand in Lie series the Hamiltonian and reversible matrix L(2)
μ,ε =

exp(S)L(1)
μ,ε exp(−S).

We split L(1)
μ,ε into its 2 × 2-diagonal and off-diagonal Hamiltonian and

reversible matrices

L(1)
μ,ε = D(1) + R(1) ,

D(1) :=
(
D1 0
0 D0

)
=

(
J2E (1) 0

0 J2G(1)

)
, R(1) :=

(
0 J2F (1)

J2[F (1)]∗ 0

)
.

(5.15)

In order to construct a transformationwhich eliminates themain part of the off-
diagonal part R(1), we conjugateL(1)

μ,ε by a symplecticmatrix exp(S) generated
as the flow of a Hamiltonian matrix S with the same form of R(1). By a Lie
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expansion we obtain

L(2)
μ,ε = exp(S)L(1)

μ,ε exp(−S)

= D(1) +
[
S , D(1)

]
+ 1

2
[S, [S, D(1)]] + R(1) + [S, R(1)]

+ 1

2

∫ 1

0
(1− τ)2 exp(τ S)ad3S(D

(1)) exp(−τ S) dτ

+
∫ 1

0
(1− τ) exp(τ S) ad2S(R

(1)) exp(−τ S) dτ

(5.16)

where adA(B) := [A, B] := AB − BA denotes the commutator between
linear operators A, B.

We look for a 4 × 4 matrix S as in (5.12) which solves the homological
equation

R(1) + [S, D(1)] = 0

which, recalling (5.15), amounts to eliminate the off-diagonal part

(
0 J2F (1) + J2�D0 − D1J2�

J2[F (1)]∗ + J2�
∗D1 − D0J2�

∗ 0

)
= 0 .

(5.17)
Note that the equationJ2F (1)+J2�D0−D1J2� = 0 implies alsoJ2[F (1)]∗+
J2�

∗D1 − D0J2�
∗ = 0 and viceversa. Thus, writing � = J2X , namely

X = −J2�, the Eq. (5.17) is equivalent to solve the “Sylvester” equation

D1X − XD0 = −J2F
(1) . (5.18)

Recalling (5.15), (5.11) and (5.3), it amounts to solve the 4 × 4 real linear
system

⎛

⎜
⎜
⎜⎜
⎝

G(1)
12 − E(1)

12 G(1)
11 E(1)

22 0

G(1)
22 G(1)

12 − E(1)
12 0 −E(1)

22

E(1)
11 0 G(1)

12 − E(1)
12 −G(1)

11
0 −E(1)

11 −G(1)
22 G(1)

12 − E(1)
12

⎞

⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
=:A

⎛

⎜
⎜
⎝

x11
x12
x21
x22

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
=:%x

=
⎛

⎜
⎜
⎝

−F21
F22
−F11
F12

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
=: %f

. (5.19)

Recall that, by (5.7), F11 = 0.
We solve this system using the following result, verified by a direct calculus.
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Lemma 5.4 The determinant of the matrix

A :=

⎛

⎜
⎜
⎝

a b c 0
d a 0 −c
e 0 a −b
0 −e −d a

⎞

⎟
⎟
⎠ (5.20)

where a, b, c, d, e are real numbers, is

det A = a4 − 2a2(bd + ce)+ (bd − ce)2 . (5.21)

If det A �= 0 then A is invertible and

A−1 = 1

det A

⎛

⎜
⎜
⎝

a
(
a2 − bd − ce

)
b
(−a2 + bd − ce

) −c (
a2 + bd − ce

) −2abc
d
(−a2 + bd − ce

)
a
(
a2 − bd − ce

)
2acd −c (−a2 − bd + ce

)

−e (
a2 + bd − ce

)
2abe a

(
a2 − bd − ce

)
b
(
a2 − bd + ce

)

−2ade −e (−a2 − bd + ce
)

d
(
a2 − bd + ce

)
a
(
a2 − bd − ce

)

⎞

⎟
⎟
⎠ .

(5.22)

As the Sylvester matrixA in (5.19) has the form (5.20) with (cfr. (4.13), (4.14))

a = G(1)
12 − E(1)

12 = −μ

2

(
1+ r(ε2, με, μ2)

)
, b = G(1)

11 = 1+ r(ε3, με2, μ2ε, μ3) ,

c = E(1)
22 = −μ2

8

(
1+ r(ε, μ)

)
, d = G(1)

22 = μ(1+ r(με, μ2)) , e = E(1)
11 = r(ε2, μ2) ,

(5.23)
we use (5.21) to compute

detA = μ2(1+ r(μ, ε3)) . (5.24)

Moreover, by (5.22), we have

A−1 = 1

μ

⎛

⎜⎜
⎝

μ
2 (1+ r(ε, μ)) 1+ r(ε, μ)

μ2

8 (1+ r(ε, μ)) −μ2

8 (1+ r(ε, μ))

μ(1+ r(ε, μ))
μ
2 (1+ r(ε, μ))

μ3

8 (1+ r(ε, μ)) −μ2

8 (1+ r(ε, μ))

r(ε2, μ2) r(ε2, μ2)
μ
2 (1+ r(ε, μ)) −1+ r(ε, μ)

μr(ε2, μ2) r(ε2, μ2) −μ(1+ r(ε, μ))
μ
2 (1+ r(ε, μ))

⎞

⎟⎟
⎠ .

(5.25)

Therefore, for any μ �= 0, there exists a unique solution %x = A−1 %f of the
linear system (5.19), namely a unique matrix X which solves the Sylvester Eq.
(5.18).

Lemma 5.5 The matrix solution X of the Sylvester Eq. (5.18) is analytic in
(μ, ε) and admits an expansion as in (5.11).
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Proof The expansion (5.11) of the coefficients xi j = [A−1 %f ]i j follows, for
any μ �= 0 small, by (5.25) and the expansions of Fi j in (5.7). In particular
each xi j admits an analytic extension at μ = 0 and the resulting matrix X
still solves (5.18) at μ = 0 (note that, for μ = 0, one has F (1) = 0 and the
Sylvester equation does not have a unique solution). � 
Since the matrix S solves the homological equation

[
S , D(1)

]+ R(1) = 0 we
deduce by (5.16) that

L(2)
μ,ε = D(1)+ 1

2

[
S , R(1)

]
+ 1

2

∫ 1

0
(1−τ 2) exp(τ S) ad2S(R

(1)) exp(−τ S)dτ .

(5.26)
The matrix 1

2

[
S , R(1)

]
is, by (5.12), (5.15), the block-diagonal Hamiltonian

and reversible matrix

1

2

[
S , R(1)

]
=

( 1
2J2(�J2[F (1)]∗ − F (1)J2�∗) 0

0 1
2J2(�

∗J2F (1) − [F (1)]∗J2�)

)

=
(
J2 Ẽ 0
0 J2G̃

)
, (5.27)

where, since � = J2X ,

Ẽ := Sym
(
J2XJ2[F (1)]∗) , G̃ := Sym

(
X∗F (1)) , (5.28)

denoting Sym(A) := 1
2 (A + A∗).

Lemma 5.6 The self-adjoint and reversibility-preserving matrices Ẽ, G̃ in
(5.28) have the form

Ẽ =
(

r1(με2, μ3ε, μ5) i r2(μ2ε2, μ3ε, μ5)

−i r2(μ2ε2, μ3ε, μ5) r5(μ2ε2, μ4ε, μ5)

)
,

G̃ =
(

r8(με2, μ3ε, μ5) i r9(μ3ε, μ2ε2, μ5)

−i r9(μ3ε, μ2ε2, μ5) r10(μ4ε, μ2ε2, μ6)

)
.

(5.29)

Proof For simplicity set F = F (1). By (5.11), (5.7) and since F11 = 0 (cfr.
(5.7)), one has

J2XJ2F
∗ =

(
x21F12 i (x22F21 + x21F22)
i x11F12 x12F21 − x11F22

)

=
(

r(με2, μ3ε, μ5) i r(μ2ε2, μ3ε, μ5)

i r(μ2ε2, μ3ε, μ5) r(μ2ε2, μ4ε, μ5)

)
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and, adding its symmetric (cfr. (5.28)), the expansion of Ẽ in (5.29) follows.
For G̃ one has

X∗F =
(
x21F21 i (x11F12 − x21F22)
i x22F21 x22F22 + x12F12

)

=
(

r(με2, μ3ε, μ5) i r(μ3ε, μ2ε2, μ5)

i r(μ4ε, μ2ε2, μ6) r(μ4ε, μ2ε2, μ6)

)

and the expansion of G̃ in (5.29) follows by symmetrizing. � 
We now show that the last term in (5.26) is very small.

Lemma 5.7 The 4× 4 Hamiltonian and reversibility matrix

1

2

∫ 1

0
(1− τ 2) exp(τ S) ad2S(R

(1)) exp(−τ S) dτ =
(

J2 Ê J2F (2)

J2[F (2)]∗ J2Ĝ

)

(5.30)

where the 2× 2 self-adjoint and reversible matrices Ê =
(

Ê11 i Ê12
−i Ê12 Ê22

)
, Ĝ =

(
Ĝ11 i Ĝ12

−i Ĝ12 Ĝ22

)
have entries

Êi j , Ĝi j = μ2r(ε3, με2, μ3ε, μ5) , i, j = 1, 2 , (5.31)

and the 2× 2 reversible matrix F (2) admits an expansion as in (5.14).

Proof Since S and R(1) are Hamiltonian and reversibility-preserving then
adS R(1) = [S, R(1)] is Hamiltonian and reversibility-preserving as well.
Thus each exp(τ S) ad2S(R

(1)) exp(−τ S) is Hamiltonian and reversibility-
preserving, and formula (5.30) holds. In order to estimate its entries we first
compute ad2S(R

(1)). Using the form of S in (5.12) and [S, R(1)] in (5.27) one
gets

ad2S(R
(1)) =

(
0 J2 F̃

J2 F̃∗ 0

)
where F̃ := 2

(
�J2G̃ − ẼJ2�

)
(5.32)

and Ẽ , G̃ are defined in (5.28). In order to estimate F̃ , we write G̃ =(
G̃11 i G̃12

−i G̃12 G̃22

)
, Ẽ =

(
Ẽ11 i Ẽ12

−i Ẽ12 Ẽ22

)
and, by (5.29), (5.11) and � = J2X ,

we obtain

�J2G̃ =
(

x21G̃12 − x22G̃11 i (x21G̃22 − x22G̃12)

i (x11G̃12 + x12G̃11) −x11G̃22 − x12G̃12

)
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=
(
r(μ2ε3, μ3ε2, μ5ε, μ7) i r(μ2ε3, μ4ε2, μ5ε, μ7)

i r(μ2ε3, μ4ε2, μ5ε, μ7) r(μ3ε3, μ4ε2, μ6ε, μ8)

)
,

ẼJ2� =
(

Ẽ12x21 − Ẽ11x11 −i (Ẽ11x12 + Ẽ12x22)
i (Ẽ12x11 − Ẽ22x21) −Ẽ12x12 − Ẽ22x22

)

=
(
r(μ2ε3, μ3ε2, μ5ε, μ7) i r(μ2ε3, μ4ε2, μ6ε, μ8)

i r(μ2ε3, μ4ε2, μ5ε, μ7) r(μ3ε3, μ4ε2, μ6ε, μ8)

)
.

Thus the matrix F̃ in (5.32) has an expansion as in (5.14). Then, for any τ ∈
[0, 1], the matrix exp(τ S) ad2S(R

(1)) exp(−τ S) = ad2S(R
(1))(1+O(μ, ε)). In

particular the matrix F (2) in (5.30) has the same expansion of F̃ , whereas the
matrices Ê , Ĝ have entries at least as in (5.31). � 
Proof of Lemma 5.2. It follows by Lemmata 5.6 and 5.7. The matrix E (2) :=
E (1) + Ẽ + Ê has the same expansion of E (1) in (4.13). The same holds for
G(2).

5.3 Complete block-decoupling and proof of the main results

We now block-diagonalize the 4× 4 Hamiltonian and reversible matrix L(2)
μ,ε

in (5.13). First we split it into its 2×2-diagonal and off-diagonal Hamiltonian
and reversible matrices

L(2)
μ,ε = D(2) + R(2) ,

D(2) :=
(
D(2)
1 0
0 D(2)

0

)

=
(
J2E (2) 0

0 J2G(2)

)
, R(2) :=

(
0 J2F (2)

J2[F (2)]∗ 0

)
.

(5.33)

Lemma 5.8 There exist a 4 × 4 reversibility-preserving Hamiltonian matrix
S(2) := S(2)(μ, ε) of the form (5.12), analytic in (μ, ε), of size O(ε3,

με2, μ3ε, μ5), and a 4 × 4 block-diagonal reversible Hamiltonian matrix
P := P(μ, ε), analytic in (μ, ε), of size μ2O(ε4, μ4ε3, μ6ε2, μ8ε, μ10),
such that

L(3)
μ,ε := exp(μS(2))L(2)

μ,ε exp(−μS(2)) = D(2) + P . (5.34)

In particular

L(3)
μ,ε =

(
J2E (3) 0

0 J2G(3)

)
(5.35)

where E (3) and G(3) are selfadjoint and reversibility-preserving matrices of
the form (4.13)-(4.14).
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Proof We set for brevity S = S(2). The Eq. (5.34) is equivalent to the system

{

D

(
eμS

(
D(2) + R(2)

)
e−μS

)− D(2) = P


∅

(
eμS

(
D(2) + R(2)

)
e−μS

) = 0 ,
(5.36)

where 
D is the projector onto the block-diagonal matrices and 
∅ onto the
block-off-diagonal ones. The second equation in (5.36) is equivalent, by a Lie
expansion, and since [S, R(2)] is block-diagonal, to

R(2)+μ
[
S , D(2)

]
+μ2 
∅

∫ 1

0
(1− τ)eμτ Sad2S

(
D(2) + R(2))e−μτ Sdτ

︸ ︷︷ ︸
=:R(S)

= 0 .

(5.37)
The “nonlinear homological equation” (5.37), i.e. [S, D(2)] = − 1

μ
R(2) −

μR(S), is equivalent to solve the 4× 4 real linear system

A%x = %f (μ, ε, %x) , %f (μ, ε, %x) = μ%v(μ, ε)+ μ2 %g(μ, ε, %x) (5.38)

associated, as in (5.19), to (5.37). The vector μ%v(μ, ε) is associated with
− 1

μ
R(2) with R(2) in (5.33). The vector μ2 %g(μ, ε, %x) is associated with the

matrix −μR(S), which is a Hamiltonian and reversible block-off-diagonal
matrix (i.e of the form (5.15)), of sizeR(S) = O(μ) since
∅ad2S(D

(2)) = 0.
The function %g(μ, ε, %x) is quadratic in %x . In view of (5.14) one has

μ2%v(μ, ε) := (−F (2)
21 , F (2)

22 ,−F (2)
11 , F (2)

12 )�, F (2)
i j = μ2r(ε3, με2, μ3ε, μ5) .

(5.39)
System (5.38) is equivalent to %x = A−1 %f (μ, ε, %x) and, writing A−1 =
1
μ
B(μ, ε) (cfr. (5.25)), to

%x = B(μ, ε)%v(μ, ε)+ μB(μ, ε)%g(μ, ε, %x) .

By the implicit function theorem this equation admits a unique small solution
%x = %x(μ, ε), analytic in (μ, ε), with size O(ε3, με2, μ3ε, μ5) as %v in (5.39).
The claimed estimate of P follows by the the first equation of (5.36) and the
estimate for S and of R(2) obtained by (5.14). � 
Proof of Theorems 2.3 and 1.1. ByLemma5.8 and recalling (3.1) the operator
Lμ,ε : Vμ,ε → Vμ,ε is represented by the 4 × 4 Hamiltonian and reversible
matrix

iμ+ exp(μS(2))L(2)
μ,ε exp(−μS(2)) = iμ+

(
J2E (3) 0

0 J2G(3)

)
=:

(
U 0
0 S

)
,
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where the matrices E (3) and G(3) expand as in (4.13)-(4.14). Consequently
the matrices U and S have an expansion as in (2.33), (2.34). Theorem 2.3 is
proved. The unstable eigenvalues in Theorem 1.1 arise from the block U. Its

bottom-left entry vanishes for μ2

8 (1+r ′1(μ, ε)) = ε2(1+r ′′1 (μ, ε)), which, by
taking square roots, amounts to solveμ = 2

√
2ε(1+r(μ, ε)). By the implicit

function theorem, it admits a unique analytic solutionμ(ε) = 2
√
2ε(1+r(ε)).

The proof of Theorem 1.1 is complete. � 
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A Proof of lemma 4.2

We provide the expansion of the basis f ±k (μ, ε) = Uμ,ε f
±
k , k = 0, 1, in (4.1),

where f ±k defined in (4.2) belong to the subspace V0,0 := Rg(P0,0). We first
Taylor-expand the transformation operatorsUμ,ε defined in (3.10). We denote
∂ε with an apex and ∂μ with a dot.

Lemma A.1 The first jets of Uμ,εP0,0 are

U0,0P0,0 = P0,0 , U ′
0,0P0,0 = P ′0,0P0,0 , U̇0,0P0,0 = Ṗ0,0P0,0 , (A.1)

U̇ ′
0,0P0,0 =

(
Ṗ ′0,0 −

1

2
P0,0 Ṗ

′
0,0

)
P0,0 , (A.2)

where

P ′0,0 =
1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1dλ , (A.3)

Ṗ0,0 = 1

2π i

∮

�

(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ , (A.4)

123

http://creativecommons.org/licenses/by/4.0/


702 M. Berti et al.

and

Ṗ ′0,0 = − 1

2π i

∮

�

(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1dλ

(A.5a)

− 1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ

(A.5b)

+ 1

2π i

∮

�

(L0,0 − λ)−1L̇ ′
0,0(L0,0 − λ)−1dλ . (A.5c)

The operatorsL ′
0,0 and L̇0,0 are

L ′
0,0 =

[
∂x ◦ p1(x) 0
−a1(x) p1(x) ◦ ∂x

]
, L̇0,0 =

[
0 sgn(D)+
0
0 0

]
, (A.6)

with a1(x) = p1(x) = −2 cos(x), cfr. (2.15)-(2.16). The operator L̇ ′
0,0 is

L̇ ′
0,0 =

[
i p1(x) 0

0 i p1(x)

]
. (A.7)

Proof By (3.10) and (3.9) one has the Taylor expansion in L(Y )

Uμ,εP0,0 = Pμ,εP0,0 + 1

2
(Pμ,ε − P0,0)

2Pμ,εP0,0 +O(Pμ,ε − P0,0)
4 ,

whereO(Pμ,ε − P0,0)4 = O(ε4, ε3μ, ε2μ2, εμ3, μ4) ∈ L(Y ). Consequently
one derives (A.1), (A.2), using also the identity Ṗ0,0P ′0,0P0,0+P ′0,0 Ṗ0,0P0,0 =
−P0,0 Ṗ ′0,0P0,0, which follows differentiating P2

μ,ε = Pμ,ε . Differentiating
(3.5) one gets (A.3)–(A.5c). Formulas (A.6)-(A.7) follow by (3.2). � 
By the previous lemma we have the Taylor expansion

f σ
k (μ, ε) = f σ

k +εP ′0,0 f σ
k +μṖ0,0 f

σ
k +με

(
Ṗ ′0,0−

1

2
P0,0 Ṗ

′
0,0

)
f σ
k +O(μ2, ε2) .

(A.8)
In order to compute the vectors P ′0,0 f σ

k and Ṗ0,0 f σ
k using (A.3) and (A.4), it

is useful to know the action of (L0,0 − λ)−1 on the vectors

f +k :=
[
cos(kx)
sin(kx)

]
, f −k :=

[− sin(kx)
cos(kx)

]
, f +−k :=

[
cos(kx)
− sin(kx)

]
,

f −−k :=
[
sin(kx)
cos(kx)

]
, k ∈ N . (A.9)
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Lemma A.2 The space H1(T) decomposes as H1(T) = V0,0 ⊕ U ⊕WH1 ,

with WH1 :=
∞⊕
k=2

Wk

H1

, where the subspaces V0,0,U and Wk , defined below,

are invariant underL0,0 and the following properties hold:

(i) V0,0 = span{ f +1 , f −1 , f +0 , f −0 } is the generalized kernel of L0,0. For any
λ �= 0 the operatorL0,0 − λ : V0,0 → V0,0 is invertible and

(L0,0 − λ)−1 f +1 = −1

λ
f +1 , (L0,0 − λ)−1 f −1 = −1

λ
f −1 ,

(L0,0 − λ)−1 f −0 = −1

λ
f −0 ,

(A.10)

(L0,0 − λ)−1 f +0 = −1

λ
f +0 + 1

λ2
f −0 . (A.11)

(ii) U := span
{
f +−1, f −−1

}
. For any λ �= ±2i the operatorL0,0 − λ : U → U

is invertible and

(L0,0 − λ)−1 f +−1 =
1

λ2 + 4

(−λ f +−1 + 2 f −−1

)
,

(L0,0 − λ)−1 f −−1 =
1

λ2 + 4

(−2 f +−1 − λ f −−1

)
.

(A.12)

(iii) Each subspaceWk := span
{
f +k , f −k , f +−k, f −−k

}
is invariant underL0,0.

Let WL2 :=
∞⊕
k=2

Wk

L2

. For any |λ| < 1
2 , the operator L0,0 − λ : WH1 →

WL2 is invertible and, for any f ∈WL2 ,

(L0,0 − λ)−1 f = (∂2x + |D|)−1
[
∂x −|D|
1 ∂x

]
f + λϕ f (λ, x) , (A.13)

for some analytic function λ 	→ ϕ f (λ, ·) ∈ H1(T, C
2).

Proof By inspection the spaces V0,0, U andWk are invariant underL0,0 and,
by Fourier series, they decompose H1(T, C

2).

(i) Formulas (A.10)-(A.11) follow using that f +1 , f −1 , f −0 are in the kernel
of L0,0, and L0,0 f

+
0 = − f −0 .

(i i) Formula (A.12) follows using that L0,0 f
+
−1 = −2 f −−1 and L0,0 f

−
−1 =

2 f +−1.
(i i i) Let W:=WH1 . The operator (L0,0−λId)

∣∣
W is invertible for any λ/∈{±i

√|k| ± i k, k ≥ 2, k ∈ N} and (L0,0
∣∣
W)−1 = (

∂2x + |D|)−1
[
∂x −|D|
1 ∂x

]

|W
.
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In particular, by Neumann series, for any λ such that |λ|
‖(L0,0

∣
∣
W)−1‖L(WL2 ,H1(T)) < 1, e.g. for any |λ| < 1/2,

(L0,0
∣∣
W − λ)−1 = (L0,0

∣∣
W)−1(Id − λ(L0,0

∣∣
W)−1)−1

= (L0,0
∣
∣
W)−1

∑

k≥0
((L0,0

∣
∣
W)−1λ)k .

Formula (A.13) follows with

ϕ f (λ, x) := (L0,0
∣
∣
W)−1

∑

k≥1
λk−1[(L0,0

∣
∣
W)−1]k f. � 

We shall also use the following formulas, obtained by (A.6) and (4.2):

L ′
0,0 f

+
1 = 2

[
sin(2x)

0

]
, L ′

0,0 f
−
1 = 2

[
cos(2x)

0

]
,

L ′
0,0 f

+
0 = 2

[
sin(x)
cos(x)

]
, L ′

0,0 f
−
0 = 0 ,

L̇0,0 f
+
1 = −i

[
cos(x)

0

]
, L̇0,0 f

−
1 = i

[
sin(x)
0

]
, L̇0,0 f

+
0 = 0,

L̇0,0 f
−
0 = f +0 .

(A.14)

We finally compute P ′0,0 f σ
k and Ṗ0,0 f σ

k .

Lemma A.3 One has

P ′0,0 f
+
1 =

[
2 cos(2x)
sin(2x)

]
, P ′0,0 f

−
1 =

[−2 sin(2x)
cos(2x)

]
, P ′0,0 f

+
0 = f +−1 , P ′0,0 f

−
0 =0,

Ṗ0,0 f
+
1 = i

4
f −−1 , P0,0 f

−
1 = i

4
f +−1 , Ṗ0,0 f

+
0 = 0 , Ṗ0,0 f

−
0 = 0 .

(A.15)

Proof We first compute P ′0,0 f
+
1 . By (A.3), (A.10) and (A.14) we deduce

P ′0,0 f
+
1 = − 1

2π i

∮

�

1

λ
(L0,0 − λ)−1

[
2 sin(2x)

0

]
dλ .

We note that
[
2 sin(2x)

0

]
belongs toW , being equal to f −−2− f −2 (recall (A.9)).

By (A.13) there is an analytic function λ 	→ ϕ(λ, ·) ∈ H1(T, C
2) so that

P ′0,0 f
+
1 = − 1

2π i

∮

�

1

λ

( [−2 cos(2x)
− sin(2x)

]
+ λϕ(λ)

)
dλ =

[
2 cos(2x)
sin(2x)

]
,
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using the residue Theorem. Similarly one computes P ′0,0 f
−
1 . By (A.3), (A.10)

and (A.14), one has P ′0,0 f
−
0 = 0. Next we compute P ′0,0 f

+
0 . By (A.3), (A.10),

(A.11) and (A.14) we get

P ′0,0 f
+
0 = − 2

2π i

∮

�

1

λ
(L0,0 − λ)−1 f −−1dλ

(A.12)= − 1

2π i

∮

�

(
− 4

λ(λ2 + 4)
f +−1 −

2

λ2 + 4
f −−1

)
dλ = f +−1 ,

where in the last step we used the residue theorem. We compute now Ṗ0,0 f
+
1 .

First we have Ṗ0,0 f
+
1 = i

2π i

∮
�

1
λ
(L0,0 − λ)−1

[
cos(x)

0

]
dλ and then, writing

[
cos(x)

0

]
= 1

2 ( f
+
1 + f +−1) and using (A.12), we conclude

Ṗ0,0 f
+
1 = i

2

1

2π i

∮

�

(
− 1

λ2
f +1 − 1

λ2 + 4
f +−1 +

2

λ(λ2 + 4)
f −−1

)
dλ = i

4
f −−1

using again the residue theorem.The computations of Ṗ0,0 f
−
1 , Ṗ0,0 f

+
0 , Ṗ0,0 f

−
0

are analogous. � 
So far we have obtained the linear terms of the expansions (4.4), (4.5), (4.6),
(4.7). We now provide further information about the expansion of the basis at
μ = 0.

Lemma A.4 The basis { f σ
k (0, ε), k = 0, 1, σ = ±} is real. For any ε it

results f −0 (0, ε) ≡ f −0 . The property (4.8) holds.

Proof The reality of the basis f σ
k (0, ε) is a consequence of Lemma 3.2-(i i i).

Since, recalling (3.2),L0,ε f
−
0 = 0 for any ε (cfr. (2.30)), we deduce (L0,ε −

λ)−1 f −0 = − 1
λ
f −0 and then, using also the residue theorem,

P0,ε f
−
0 = − 1

2π i

∮

�

(L0,ε − λ)−1 f −0 dλ = f −0 .

In particular P0,ε f
−
0 = P0,0 f

−
0 , for any ε and we get, by (3.10), f −0 (0, ε) =

U0,ε f
−
0 = f −0 , for any ε.

Let us prove property (4.8). In view of (3.21) and since the basis is real,

we know that f +k (0, ε) =
[
even(x)
odd(x)

]
, f −k (0, ε) =

[
odd(x)
even(x)

]
, for any k =

0, 1. By Lemma 4.1 the basis { f σ
k (0, ε)} is symplectic (cfr. (3.19)) and, since

J f −0 (0, ε) = J f −0 =
[
1
0

]
, for any ε, we get

0 = (J f −0 (0, ε) , f +1 (0, ε)
) =

( [
1
0

]
, f +1 (0, ε)

)
,
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1 = (J f −0 (0, ε), f +0 (0, ε)
) =

( [
1
0

]
, f +0 (0, ε)

)
.

Thus the first component of both f +1 (0, ε) and f +0 (0, ε)−
[
1
0

]
has zero average,

proving (4.8). � 
We now provide further information about the expansion of the basis at

ε = 0.

Lemma A.5 For any small μ, we have f +0 (μ, 0) ≡ f +0 and f −0 (μ, 0) ≡ f −0 .
Moreover the vectors f +1 (μ, 0) and f −1 (μ, 0) have both components with zero
space average.

Proof The operator Lμ,0 =
[

∂x |D + μ|
−1 ∂x

]
leaves invariant the subspace Z :=

span{ f +0 , f −0 } since Lμ,0 f
+
0 = − f −0 and Lμ,0 f

−
0 = μ f +0 . The operator

Lμ,0
∣∣
Z has the two eigenvalues±i

√
μ, which, for smallμ, lie inside the loop

� around 0 in (3.5). Then, by (3.8), we have Z ⊆ Vμ,0 = Rg(Pμ,0) and

Pμ,0 f
±
0 = f ±0 , f ±0 (μ, 0) = Uμ,0 f

±
0 = f ±0 , for any μ small .

The basis { f σ
k (μ, 0)} is symplectic. Then, since J f +0 =

[
0
−1

]
and J f −0 =

[
1
0

]
, we have

0 = (J f +0 (μ, 0) , f σ
1 (μ, 0)

) =
([

0
−1

]
, f σ

1 (μ, 0)
)

,

0 =
(
J f −0 (μ, 0), f σ

1 (μ, 0)
)
=

([
1
0

]
, f σ

1 (μ, 0)
)

,

namely both the components of f ±1 (μ, 0) have zero average. � 
Wefinally consider theμε term in the expansion (A.8) of the vectors f σ

k (μ, ε),
k = 0, 1, σ = ±.

Lemma A.6 The derivatives (∂μ∂ε f σ
k )(0, 0) =

(
Ṗ ′0,0 − 1

2 P0,0 Ṗ
′
0,0

)
f σ
k sat-

isfy

(∂μ∂ε f
+
1 )(0, 0) = i

[
odd(x)
even(x)

]
, (∂μ∂ε f

−
1 )(0, 0)− = i

[
even(x)
odd(x)

]
,

(∂μ∂ε f
+
0 )(0, 0) = i

[
odd(x)
even0(x)

]
, (A.16)

(∂μ∂ε f
−
0 )(0, 0) = 1

2

[
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

]
.
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Proof We decompose the Fourier multiplier operator L̇0,0 in (A.6) as

L̇0,0 = L̇ (I )
0,0 + L̇ (I I )

0,0 , L̇ (I )
0,0 :=

[
0 sgn(D)

0 0

]
, L̇ (I I )

0,0 :=
[
0 
0
0 0

]
,

and, accordingly, we write Ṗ ′0,0 = (A.5a)(I ) + (A.5a)(I I ) + (A.5b)(I ) +
(A.5b)(I I ) + (A.5c) defining

(A.5a)(I ) := − 1

2π i

∮

�

(L0,0 − λ)−1L̇ (I )
0,0 (L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ ,

(A.17)

(A.5a)(I I ) := − 1

2π i

∮

�

(L0,0 − λ)−1L̇ (I I )
0,0 (L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ ,

(A.18)

(A.5b)(I ) := − 1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1L̇ (I )

0,0 (L0,0 − λ)−1dλ ,

(A.19)

(A.5b)(I I ) := − 1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1L̇ (I I )

0,0 (L0,0 − λ)−1dλ .

(A.20)

Note that the operators (A.5a)(I ), (A.5b)(I ) and (A.5c) are purely imaginary
because L̇ (I )

0,0 is purely imaginary, L ′
0,0 in (A.6) is real and L̇ ′

0,0 in (A.7)
is purely imaginary (argue as in Lemma 3.2-(i i i)). Then, applied to the real
vectors f σ

k , k = 0, 1, σ = ±, give purely imaginary vectors.
We first compute (∂μ∂ε f

+
1 )(0, 0). Using (A.10) and (A.14) we get

(A.5a)(I I ) f +1 = 2

2π i

∮

�

1

λ
(L0,0 − λ)−1L̇ (I I )

0,0 (L0,0 − λ)−1
[
sin(2x)

0

]
dλ = 0

because, by Lemma A.2, (L0,0−λ)−1
[
sin(2x)

0

]
∈W and therefore it is a vec-

tor with zero average, so in the kernel of L̇ (I I )
0,0 . In addition (A.5b)(I I ) f +1 = 0

since L̇ (I I )
0,0 (L0,0 − λ)−1 f +1 = 0. All together Ṗ ′0,0 f

+
1 is a purely imaginary

vector. Since P0,0 is a real operator, also (Ṗ ′0,0− 1
2 P0,0 Ṗ

′
0,0) f

+
1 is purely imag-

inary, and Lemma 3.8 implies that (∂μ∂ε f
+
1 )(0, 0) has the claimed structure

in (A.16). In the same way one proves the structure for (∂μ∂ε f
−
1 )(0, 0).

Next we prove that (∂μ∂ε f
+
0 )(0, 0), in addition to being purely imaginary,

has zero average. We have, by (A.11) and (A.14)

(A.5a)(I ) f +0 := 2

2π i

∮

�

(L0,0 − λ)−1L̇ (I )
0,0 (L0,0 − λ)−1 1

λ

[
sin(x)
cos(x)

]
dλ
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and since the operators (L0,0 − λ)−1 and L̇ (I )
0,0 are both Fourier multipliers,

hence they preserve the absence of average of the vectors, then (A.5a)(I ) f +0
has zero average. In addition (A.5a)(I I )

f +0 = 0as L̇ (I I )
0,0 (L0,0 − λ)−1

[
sin(x)
cos(x)

]
= 0.

Next (A.5b)(I ) f +0 = 0 since L̇ (I )
0,0 f ±0 = 0, cfr. (2.24). Using also that

L̇ (I I )
0,0 f +0 = 0 and L̇ (I I )

0,0 f −0 = f +0 ,

(A.5b)(I I ) f +0
(A.11)= − 1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1 1

λ2
f +0 dλ

(A.11),(A.14)= 2

2π i

∮

�

1

λ3
(L0,0 − λ)−1

[
sin(x)
cos(x)

]
dλ = 0

using (A.12) and the residue theorem. Finally, by (A.11) and (A.7) where
p1(x) = −2 cos(x),

(A.5c) f +0 = − i 2

2π i

∮

�

(L0,0 − λ)−1
(
− 1

λ

[
cos(x)

0

]
+ 1

λ2

[
0

cos(x)

] )
dλ

is a vector with zero average. We conclude that Ṗ ′0,0 f
+
0 is an imaginary vector

with zero average, as well as (∂μ∂ε f
+
0 )(0, 0) since P0,0 sends zero average

functions in zero average functions. Finally, by Lemma 3.8, (∂μ∂ε f
+
0 )(0, 0)

has the claimed structure in (A.16).
We finally consider (∂μ∂ε f

−
0 )(0, 0). By (A.10) and L ′

0,0 f
−
0 = 0 (cfr.

(A.14)), it results, for M = I, I I,

(A.5a)(M) f −0 = − 1

2π i

∮

�

(L0,0 − λ)−1

λ
L̇ (M)

0,0 (L0,0 − λ)−1L ′
0,0 f

−
0 dλ = 0 .

Next by (A.10) and L̇ (I )
0,0 f −0 = 0 we get (A.5b)(I ) f −0 = 0. Then, since

L̇ (I I )
0,0 f −0 = f +0 ,

(A.5b)(I I ) f −0
(A.10)−(A.11)= 1

2π i

∮

�

(L0,0 − λ)−1

λ
L ′

0,0

(
− 1

λ
f +0 + 1

λ2
f −0

)
dλ

(A.14),(A.12)= − 2

2π i

∮

�

1

λ2

1

λ2 + 4
(−2 f +−1 − λ f −−1)dλ

= 1

2
f −−1 =

1

2

[
sin(x)
cos(x)

]
,
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which is the only real term of (∂μ∂ε f
−
0 )(0, 0) in (A.16). Finally by (A.10) and

(A.7)

(A.5c) f −0 = 2i

2π i

∮

�

(L0,0 − λ)−1 1

λ

[
0

cos(x)

]
dλ = − i

2

[
cos(x)
− sin(x)

]

by (A.10), (A.12) and the residue theorem. In conclusion Ṗ ′0,0 f
−
0 =

1
2

[
sin(x)
cos(x)

]
− i

2

[
cos(x)
− sin(x)

]
∈ U and, since P0,0|U = 0, we find that

(
Ṗ ′0,0 − 1

2 P0,0 Ṗ
′
0,0

)
f −0 = 1

2

[
sin(x)
cos(x)

]
− i

2

[
cos(x)
sin(x)

]
. � 

This completes the proof of Lemma 4.2.
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